It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
During the CINDY/DYNAMO field campaign (fall/winter 2011), intensive measurements of the upper ocean, including an array of several surface moorings and ship observations for the area around 75°E-80°E, Equator-10°S, were conducted. In this study, large-scale upper ocean variations surrounding the intensive array during the field campaign are described based on the analysis of satellite-derived data. Surface currents, sea surface height (SSH), sea surface salinity (SSS), surface winds and sea surface temperature (SST) during the CINDY/DYNAMO field campaign derived from satellite observations are analyzed. During the intensive observation period, three active episodes of large-scale convection associated with the Madden-Julian Oscillation (MJO) propagated eastward across the tropical Indian Ocean. Surface westerly winds near the equator were particularly strong during the events in late November and late December, exceeding 10 m/s. These westerlies generated strong eastward jets (>1 m/s) on the equator. Significant remote ocean responses to the equatorial westerlies were observed in both Northern and Southern Hemispheres in the central and eastern Indian Oceans. The anomalous SSH associated with strong eastward jets propagated eastward as an equatorial Kelvin wave and generated intense downwelling near the eastern boundary. The anomalous positive SSH then partly propagated westward around 4°S as a reflected equatorial Rossby wave, and it significantly influenced the upper ocean structure in the Seychelles-Chagos thermocline ridge about two months after the last MJO event during the field campaign. For the first time, it is demonstrated that subseasonal SSS variations in the central Indian Ocean can be monitored by Aquarius measurements based on the comparison with in situ observations at three locations. Subseasonal SSS variability in the central Indian Ocean observed by RAMA buoys is explained by large-scale water exchanges between the Arabian Sea and Bay of Bengal through the zonal current variation near the equator.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer