It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Polyvinylidene fluoride (PVDF) is popular sensing material because of its unique piezoelectric characteristics. In this work an impact sensor was prepared from a sandwiched structure PVDF film, and the related detection circuits were presented. The dependence of the PVDF sensors' response on the elasticity of the supporting materials was examined and discussed. Here two response indexes were discussed, which were the peak-to-peak voltage (Vpp) and the recovery time. Firstly, falling impact experiments were executed on desk-supported PVDF sensors (100 mm PVDF film) using free falls of different weights from different heights. Then the same shock experiments were repeated on the same sensor, but changing the backstops to a sponge and rubber, respectively. On the desk, the values of Vpp were bigger than when the other two backstops were used; but the changes of the impact energy could not be reflected by the PVDF sensor when it was supported by a hard material. It was found that the biggest sensitivity of the voltage response (about 96.62 V/J) was obtained by the sponge-supported sensor; for the same sensor, when it was supported by rubber, the slope was 82.26 V/J. Moreover, the recovery time for the desk-supported sensor was almost constant, varying from 0.15 to 0.18 s, while for the same sensor supported by sponge or rubber, its recovery time changed with the shifting of the impact energy in the range of 0.02~0.36 s, but no pattern could be found in the recovery-time characteristics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




