Full Text

Turn on search term navigation

Copyright Nature Publishing Group Jul 2014

Abstract

Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies.

Details

Title
Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network
Author
Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgo, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba
Pages
4352
Publication year
2014
Publication date
Jul 2014
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1543456948
Copyright
Copyright Nature Publishing Group Jul 2014