Full Text

Turn on search term navigation

© 2014 Rowinska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Introduction

The aim of our study was to develop a reproducible murine model of elastase-induced aneurysm formation combined with aortic transplantation.

Methods

Adult male mice (n = 6–9 per group) underwent infrarenal, orthotopic transplantation of the aorta treated with elastase or left untreated. Subsequently, both groups of mice were monitored by ultrasound until 7 weeks after grafting.

Results

Mice receiving an elastase-pretreated aorta developed aneurysms and exhibited a significantly increased diastolic vessel diameter compared to control grafted mice at 7 week after surgery (1.11±0.10 mm vs. 0.75±0.03 mm; p≤0,001). Histopathological examination revealed disruption of medial elastin, an increase in collagen content and smooth muscle cells, and neointima formation in aneurysm grafts.

Conclusions

We developed a reproducible murine model of elastase-induced aneurysm combined with aortic transplantation. This model may be suitable to investigate aneurysm-specific inflammatory processes and for use in gene-targeted animals.

Details

Title
Establishment of a New Murine Elastase-Induced Aneurysm Model Combined with Transplantation
Author
Rowinska, Zuzanna; Gorressen, Simone; Merx, Marc W; Koeppel, Thomas A; Liehn, Elisa A; Zernecke, Alma
First page
e102648
Section
Research Article
Publication year
2014
Publication date
Jul 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1548811556
Copyright
© 2014 Rowinska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.