It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 94
Abstract
Background: The combination of voluntary effort and functional electrical stimulation (ES) appears to have a greater potential to induce plasticity in the motor cortex than either electrical stimulation or voluntary training alone. However, it is not clear whether the motor commands from the central nervous system, the afferent input from peripheral organs, or both, are indispensable to induce the facilitative effects on cortical excitability. To clarify whether voluntary motor commands enhance corticospinal tract (CoST) excitability during neuromuscular ES, without producing voluntary muscular contraction (VMC), we examined the effect of a combination of motor imagery (MI) and electrical muscular stimulation on CoST excitability using transcranial magnetic stimulation (TMS).
Methods: Eight neurologically healthy male subjects participated in this study. Five conditions (resting, MI, ES, ES + MI [ESMI], and VMC) were established. In the ES condition, a 50-Hz stimulus was applied for 3 to 5 s to the first dorsal interosseous (FDI) while subjects were relaxed. In the MI condition, subjects were instructed to imagine abducting their index finger. In the ESMI condition, ES was applied approximately 1 s after the subject had begun to imagine index finger abduction. In the VMC condition, subjects modulated the force of index finger abduction to match a target level, which was set at the level produced during the ES condition. TMS was applied on the hotspot for FDI, and the amplitude and latency of motor evoked potentials (MEPs) were measured under each condition.
Results: MEP amplitudes during VMC and ESMI were significantly larger than those during other conditions; there was no significant difference in MEP amplitude between these 2 conditions. The latency of MEPs evoked during MI and VMC were significantly shorter than were those evoked during rest and ES.
Conclusions: MEP acutely reinforced in ESMI may indicate that voluntary motor drive markedly contributes to enhance CoST excitability, without actual muscular contraction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer