Full text

Turn on search term navigation

Copyright © 2014 Mohamed Abdel-Monaem Zytoon et al. Mohamed Abdel-Monaem Zytoon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m-3 h-1 were achieved in the airlift bioreactor under investigation at a pH range 6.5-8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO < 0.2 mg/L) and at higher pH values. The sulfur oxidizing bacteria in the bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0-8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8-8.5.

Details

Title
Bioconversion of High Concentrations of Hydrogen Sulfide to Elemental Sulfur in Airlift Bioreactor
Author
Mohamed Abdel-Monaem Zytoon; Abdulraheem Ahmad AlZahrani; Madbuli Hamed Noweir; Fadia Ahmed El-Marakby
Publication year
2014
Publication date
2014
Publisher
John Wiley & Sons, Inc.
ISSN
23566140
e-ISSN
1537744X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1552845055
Copyright
Copyright © 2014 Mohamed Abdel-Monaem Zytoon et al. Mohamed Abdel-Monaem Zytoon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.