Full text

Turn on search term navigation

Copyright © 2014 Daeyeoul Kim et al. Daeyeoul Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities [subscript]D2k[/subscript] (n)=(1/4)[subscript]σ2k+1,0[/subscript] (n;2)-2·[superscript]42k[/superscript] [subscript]σ2k+1[/subscript] (n/4) -(1/2)[[superscript]∑d|n,d...1;1 (4)[/superscript] {[subscript]E2k[/subscript] (d)+[subscript]E2k[/subscript] (d-1)}+[superscript]22k[/superscript] [superscript]∑d|n,d...1;1 (2)[/superscript] [subscript]E2k[/subscript] ((d+(-1[superscript])(d-1)/2[/superscript] )/2)] , [subscript]U2k[/subscript] (p,q)=[superscript]22k-2[/superscript] [-((p+q)/2)[subscript]E2k[/subscript] ((p+q)/2+1)+((q-p)/2)[subscript]E2k[/subscript] ((q-p)/2)-[subscript]E2k[/subscript] ((p+1)/2)-[subscript]E2k[/subscript] ((q+1)/2)+[subscript]E2k+1[/subscript] ((p+q)/2 +1)-[subscript]E2k+1[/subscript] ((q-p)/2)] , and [subscript]F2k[/subscript] (n)=(1/2){[superscript]σ2k+1[dagger][/superscript] (n)-[superscript]σ2k[dagger][/superscript] (n)} . As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.

Details

Title
Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
Author
Kim, Daeyeoul; Bayad, Abdelmejid; Park, Joongsoo
Publication year
2014
Publication date
2014
Publisher
John Wiley & Sons, Inc.
ISSN
10853375
e-ISSN
16870409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1560857266
Copyright
Copyright © 2014 Daeyeoul Kim et al. Daeyeoul Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.