Full Text

Turn on search term navigation

Copyright © 2014 Ya-Ning Li and Hong-Rui Sun. Ya-Ning Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We firstly prove that β -times integrated α -resolvent operator function ((α,β) -ROF) satisfies a functional equation which extends that of β -times integrated semigroup and α -resolvent operator function. Secondly, for the inhomogeneous α -Cauchy problem [superscript]c[/superscript] [superscript]Dtα[/superscript] u(t)=Au(t)+f(t) , t∈(0,T) , u(0)=[subscript]x0[/subscript] , u'(0)=[subscript]x1[/subscript] , if A is the generator of an (α,β) -ROF, we give the relation between the function v(t)=[subscript]Sα,β[/subscript] (t)[subscript]x0[/subscript] +([subscript]g1[/subscript] *[subscript]Sα,β[/subscript] )(t)[subscript]x1[/subscript] +([subscript]gα-1[/subscript] *[subscript]Sα,β[/subscript] *f)(t) and mild solution and classical solution of it. Finally, for the problem [superscript]c[/superscript] [superscript]Dtα[/superscript] v(t)=Av(t)+[subscript]gβ+1[/subscript] (t)x , t>0 , [superscript]v(k)[/superscript] (0)=0 , k=0,1,......,N-1, where A is a linear closed operator. We show that A generates an exponentially bounded (α,β) -ROF on a Banach space X if and only if the problem has a unique exponentially bounded classical solution [subscript]vx[/subscript] and A[subscript]vx[/subscript] ∈[superscript]L loc 1[/superscript] ([superscript]...+[/superscript] ,X). Our results extend and generalize some related results in the literature.

Details

Title
Integrated Fractional Resolvent Operator Function and Fractional Abstract Cauchy Problem
Author
Ya-Ning, Li; Hong-Rui, Sun
Publication year
2014
Publication date
2014
Publisher
John Wiley & Sons, Inc.
ISSN
10853375
e-ISSN
16870409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1564228906
Copyright
Copyright © 2014 Ya-Ning Li and Hong-Rui Sun. Ya-Ning Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.