Full Text

Turn on search term navigation

Copyright Copernicus GmbH 2014

Abstract

Pyrogenic organic matter (PyOM) plays an important role as a stable carbon (C) sink in the soils of terrestrial ecosystems. However, uncertainties remain about in situ turnover rates of fire-derived PyOM in soil, the main processes leading to PyOM-C and nitrogen (N) losses from the soil, and the role of N availability on PyOM cycling in soils.

We measured PyOM and native soil organic carbon losses from the soil as carbon dioxide and dissolved organic carbon (DOC) using additions of highly 13 C-labelled PyOM (2.03 atom %) and its precursor pinewood during 1 year in a temperate forest soil. The field experiment was carried out under ambient and increased mineral N deposition (+60 kg N-NH4 NO3 ha-1 year-1 ). The results showed that after 1 year: (1) 0.5% of PyOM-C and 22% of wood-C were mineralized as CO2 , leading to an estimated turnover time of 191 and 4 years, respectively; (2) the quantity of PyOM and wood lost as dissolved organic carbon was negligible (0.0004 ± 0.0003% and 0.022 ± 0.007% of applied-C, respectively); and (3) N additions decreased cumulative PyOM mineralization by 43%, but did not affect cumulative wood mineralization and did not affect the loss of DOC from PyOM or wood. We conclude that mineralization to CO2 was the main process leading to PyOM losses during the first year of mineralization in a forest soil, and that N addition can decrease PyOM-C cycling, while added N showed no effect on wood C cycling.

Details

Title
Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition
Author
Maestrini, B.; Abiven, S.; Singh, N.; Bird, J.; Torn, M. S.; Schmidt, M. W. I.
First page
5199
Publication year
2014
Publication date
2014
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1567545930
Copyright
Copyright Copernicus GmbH 2014