Full Text

Turn on search term navigation

Copyright Nature Publishing Group Oct 2014

Abstract

Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2 Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors.

Details

Title
Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina
Author
Martín, Jaime; Martín-gonzález, Marisol; Francisco Fernández, Jose; Caballero-calero, Olga
Pages
5130
Publication year
2014
Publication date
Oct 2014
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1615740910
Copyright
Copyright Nature Publishing Group Oct 2014