Abstract

We utilize a Poisson likelihood in a maximum likelihood statistical analysis to analyze X-ray spectragraphic data. Specifically, we examine four extragalactic supernova remnants (SNR). IKT 5 (SNR 0047-73.5), IKT 25 (SNR 0104-72.3), and DEM S 128 (SNR 0103-72.4) which are designated as Type Ia in the literature due to their spectra and morphology. This is troublesome because of their asymmetry, a trait not usually associated with young Type Ia remnants. We present Chandra X-ray Observatory data on these three remnants, and perform a maximum likelihood analysis on their spectra. We find that the X-ray emission is dominated by interactions with the interstellar medium. In spite of this, we find a significant Fe overabundance in all three remnants. Through examination of radio, optical, and infrared data, we conclude that these three remnants are likely not "classical" Type Ia SNR, but may be examples of so-called "prompt" Type Ia SNR. We detect potential point sources that may be members of the progenitor systems of both DEM S 128 and IKT 5, which could suggest a new subclass of prompt Type Ia SNR, Fe-rich CC remnants. In addition, we examine IKT 18. This remnant is positionally coincident with the X-ray point source HD 5980. Due to an outburst in 1994, in which its brightness changed by 3 magnitudes (corrsponding to an increase in luminosity by a factor of 16) HD 5980 was classified as a luminous blue variable star. We examine this point source and the remnant IKT 18 in the X-ray, and find that its non-thermal photon index has decreased from 2002 to 2013, corresponding to a larger proportion of more energetic X-rays, which is unexpected.

Details

Title
Using Poisson statistics to analyze supernova remnant emission in the low counts X-ray regime
Author
Roper, Quentin Jeffrey
Year
2014
Publisher
ProQuest Dissertations & Theses
ISBN
978-1-321-22018-6
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
1617975637
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.