[A & I plus PDF only]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
We present a new correction scheme for filter-based absorption photometers based on a constrained two-stream (CTS) radiative transfer model and experimental calibrations. The two-stream model was initialized using experimentally accessible optical parameters of the filter. Experimental calibrations were taken from the literature and from dedicated experiments for the present manuscript. Uncertainties in the model and calibration experiments are discussed and uncertainties for retrieval of absorption coefficients are derived. For single-scattering albedos lower than 0.8, the new CTS method and also other correction schemes suffer from the uncertainty in calibration experiments, with an uncertainty of about 20% in the absorption coefficient. For high single-scattering albedos, the CTS correction significantly reduces errors. At a single-scattering albedo of about 0.98 the error can be reduced to 30%, whereas errors using the Bond correction (Bond et al., 1999) are up to 100%. The correction scheme was tested using data from an independent experiment. The tests confirm the modeled performance of the correction scheme when comparing the CTS method to other established correction methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer