Abstract
For positron emission tomography (PET) kinetic modelling, an accurate determination of the arterial input function is required. In this study, a blood sampling system was developed and tested using different radiotracers in rats.
The detector consists of pairs of lutetium yttrium oxyorthosilicate (LYSO) detectors, photomultiplier tubes and lead shield assembled within a steel casing working in coincidence mode. Rats were cannulated with microtubes in the femoral artery and vein for arterial blood sampling as well as administration of the PET tracers. Connected PTFE microtubes were centred between the LYSO crystals using a special holder. To enhance sensitivity, three layers with two coils were used. A flexible tube pump was used to ensure a constant blood flow. Performance of the detector was assessed with [^sup 18^F]fludeoxyglucose (FDG), [^sup 18^F]ciprofloxacin, (R)-[^sup 11^C]verapamil, [^sup 11^C]tariquidar, [^sup 11^C]mephobarbital and [^sup 11^C]MC113. Obtained input function curves were compared with manual samples drawn every 5 s during the first 3 min and further on at 5, 10, 20, 30, 40, 50 and 60 min after radiotracer injection. After manual sampling, an arterio/venous shunt was established. Shape and area-under-the-curve (AUC; Bq/[mu]l*h) of the input functions were evaluated.
The developed detector system provided an absolute sensitivity of 6.5%. Maximum peak values agreed well between manual samples and the detector with a mean difference of -0.4%±7.0% (max 12.0%, min -9.9%). AUC values also exhibited an excellent correlation (R=0.996) between manual sampling and detector measurements with a mean difference of 9.3%±9.7% (max 24.1%, min -3.2%). The system was able to measure peak blood activity concentration levels of 110 to 2,000 Bq/[mu]l which corresponds to injected activities from 5.5 to 100 MBq depending on the used radiotracer, applied volume and weight of the animal.
This study demonstrates that the developed blood sampling system can be used for in vivo small animal PET studies in rats in a reliable way. The usage of the systems enhances the accuracy of the input curve as handling of small blood samples especially with low activity (as for C-11) is prone to measurement errors. Additionally, the radiation dose of the experimenters can be reduced, as it is not required anymore to continuously draw samples where the personal is in close contact to the radioactive animals and blood.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




