Abstract
We consider a symmetric scalar theory with quartic coupling and solve the equations of motion from the 4PI effective action in 2- and 3-dimensions using an iterative numerical lattice method. For coupling less than 10 (in dimensionless units) good convergence is obtained in less than 10 iterations. We use lattice size up to 16 in 2-dimensions and 10 in 3-dimensions and demonstrate the convergence of the results with increasing lattice size. The self-consistent solutions for the 2-point and 4-point functions agree well with the perturbative ones when the coupling is small and deviate when the coupling is large.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





