Abstract
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image)
In this paper we present the first analytic computation of the six-point two-loop amplitude of ABJM theory. We show that the two-loop amplitude consists of corrections proportional to two distinct local Yangian invariants which can be identified as the tree- and the one-loop amplitude respectively. The two-loop correction proportional to the tree-amplitude is identical to the one-loop BDS result of ... SYM plus an additional remainder function, while the correction proportional to the one-loop amplitude is finite. Both the remainder and the finite correction are dual conformal invariant, which implies that the two-loop dual conformal anomaly equation for ABJM is again identical to that of one-loop ... super Yang-Mills, as was first observed at four-point. We discuss the theory on the Higgs branch, showing that its amplitudes are infrared finite, but equal, in the small mass limit, to those obtained in dimensional regularization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




