Abstract
We study a holographic model with vector condensate by coupling the anti-de Sitter gravity to an Abelian gauge field and a charged vector field in (3+1) dimensional spacetime. In this model there exists a non-minimal coupling of the vector field to the gauge field. We find that there is a critical temperature below which the charged vector condenses via a second order phase transition. The DC conductivity becomes infinite and the AC conductivity develops a gap in the condensed phase. We study the effect of a background magnetic field on the system. It is found that the background magnetic field can induce the condensate of the vector field even in the case without chemical potential/charge density. In the case with non-vanishing charge density, the transition temperature raises with the applied magnetic field, and the condensate of the charged vector operator forms a vortex lattice structure in the spatial directions perpendicular to the magnetic field.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




