Abstract

In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory.

Details

Title
Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films
Author
Huang, Chia-cheng; Wang, Fang-hsing; Wu, Chia-ching; Huang, Hong-hsin; Yang, Cheng-fu
Pages
1-8
Publication year
2013
Publication date
May 2013
Publisher
Springer Nature B.V.
ISSN
19317573
e-ISSN
1556276X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1652957838
Copyright
The Author(s) 2013