It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Advanced energy management control systems (EMCS), or building automation systems (BAS), offer an excellent means of reducing energy consumption in heating, ventilating, and air conditioning (HVAC) systems while maintaining and improving indoor environmental conditions. This can be achieved through the use of computational intelligence and optimization. This research will evaluate model-based optimization processes (OP) for HVAC systems utilizing MATLAB, genetic algorithms and self-learning or self-tuning models (STM), which minimizes the error between measured and predicted performance data. The OP can be integrated into the EMCS to perform several intelligent functions achieving optimal system performance. The development of several self-learning HVAC models and optimizing the process (minimizing energy use) will be tested using data collected from the HVAC system servicing the Academic building on the campus of NC A&T State University.
Intelligent approaches for modeling and optimizing HVAC systems are developed and validated in this research. The optimization process (OP) including the STMs with genetic algorithms (GA) enables the ideal operation of the building's HVAC systems when running in parallel with a building automation system (BAS). Using this proposed optimization process (OP), the optimal variable set points (OVSP), such as supply air temperature (Ts), supply duct static pressure (Ps), chilled water supply temperature (Tw), minimum outdoor ventilation, reheat (or zone supply air temperature, Tz), and chilled water differential pressure set-point (Dpw) are optimized with respect to energy use of the HVAC's cooling side including the chiller, pump, and fan. HVAC system component models were developed and validated against both simulated and monitored real data of an existing VAV system. The optimized set point variables minimize energy use and maintain thermal comfort incorporating ASHRAE's new ventilation standard 62.1-2013. The proposed optimization process is validated on an existing VAV system for three summer months (May, June, August).
This proposed research deals primarily with: on-line, self-tuning, optimization process (OLSTOP); HVAC design principles; and control strategies within a building automation system (BAS) controller. The HVAC controller will achieve the lowest energy consumption of the cooling side while maintaining occupant comfort by performing and prioritizing the appropriate actions. Recent technological advances in computing power, sensors, and databases will influence the cost savings and scalability of the system. Improved energy efficiencies of existing Variable Air Volume (VAV) HVAC systems can be achieved by optimizing the control sequence leading to advanced BAS programming. The program's algorithms analyze multiple variables (humidity, pressure, temperature, CO2, etc.) simultaneously at key locations throughout the HVAC system (pumps, cooling coil, chiller, fan, etc.) to reach the function's objective, which is the lowest energy consumption while maintaining occupancy comfort.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





