Content area

Abstract

Herboxidiene is a natural product produced by Streptomyces chromofuscus exhibiting herbicidal activity as well as antitumor properties. Using different substrate-flexible cytochrome P450s and glycosyltransferase, different novel derivatives of herboxidiene were generated with structural modifications by hydroxylation or epoxidation or conjugation with a glucose moiety. Moreover, two isomers of herboxidiene containing extra tetrahydrofuran or tetrahydropyran moiety in addition to the existing tetrahydropyran moiety were characterized. The hydroxylated products for both of these compounds were also isolated and characterized from S. chromofuscus PikC harboring pikC from the pikromycin gene cluster of Streptomyces venezuelae and S. chromofuscus EryF harboring eryF from the erythromycin gene cluster of Saccharopolyspora erythraea. The compounds generated were characterized by high-resolution quadrupole-time-of-flight electrospray ionization mass spectrometry (HR-QTOF-ESI/MS) and ^sup 1^H- and ^sup 13^C-nuclear magnetic resonance (NMR) analyses. The evaluation of antibacterial activity against three Gram-positive bacteria, Micrococcus luteus, Bacillus subtilis, and Staphylococcus aureus, indicated that modification resulted in a transition from anticancer to antibacterial potency.

Details

Title
Structural modification of herboxidiene by substrate-flexible cytochrome P450 and glycosyltransferase
Pages
3421-3431
Publication year
2015
Publication date
Apr 2015
Publisher
Springer Nature B.V.
ISSN
01757598
e-ISSN
14320614
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1668116866
Copyright
Copyright Springer Nature B.V. Apr 2015