Full Text

Turn on search term navigation

Copyright © 2015 Roeland Jozef Gentil De Moor et al. Roeland Jozef Gentil De Moor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Light and heat increase the reactivity of hydrogen peroxide. There is no evidence that light activation (power bleaching with high-intensity light) results in a more effective bleaching with a longer lasting effect with high concentrated hydrogen peroxide bleaching gels. Laser light differs from conventional light as it requires a laser-target interaction. The interaction takes place in the first instance in the bleaching gel. The second interaction has to be induced in the tooth, more specifically in the dentine. There is evidence that interaction exists with the bleaching gel: photothermal, photocatalytical, and photochemical interactions are described. The reactivity of the gel is increased by adding photocatalyst of photosensitizers. Direct and effective photobleaching, that is, a direct interaction with the colour molecules in the dentine, however, is only possible with the argon (488 and 415 nm) and KTP laser (532 nm). A number of risks have been described such as heat generation. Nd:YAG and especially high power diode lasers present a risk with intrapulpal temperature elevation up to 22°C. Hypersensitivity is regularly encountered, being it of temporary occurrence except for a number of diode wavelengths and the Nd:YAG. The tooth surface remains intact after laser bleaching. At present, KTP laser is the most efficient dental bleaching wavelength.

Details

Title
Laser Teeth Bleaching: Evaluation of Eventual Side Effects on Enamel and the Pulp and the Efficiency In Vitro and In Vivo
Author
Roeland Jozef Gentil De Moor; Verheyen, Jeroen; Verheyen, Peter; Diachuk, Andrii; Meire, Maarten August; De Coster, Peter Jozef; De Bruyne, Mieke; Keulemans, Filip
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
23566140
e-ISSN
1537744X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1669862655
Copyright
Copyright © 2015 Roeland Jozef Gentil De Moor et al. Roeland Jozef Gentil De Moor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.