Full text

Turn on search term navigation

© 2015 Cacciatore et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective

The increasing prevalence of antibiotic-resistant bacterial infections led to identify alternative strategies for a novel therapeutic approach. In this study, we synthesized ten carvacrol codrugs – obtained linking the carvacrol hydroxyl group to the carboxyl moiety of sulphur-containing amino acids via an ester bond – to develop novel compounds with improved antimicrobial and antibiofilm activities and reduced toxicity respect to carvacrol alone.

Method

All carvacrol codrugs were screened against a representative panel of Gram positive (S. aureus and S. epidermidis), Gram negative (E. coli and P. aeruginosa) bacterial strains and C. albicans, using broth microdilution assays.

Findings

Results showed that carvacrol codrug 4 possesses the most notable enhancement in the anti-bacterial activity displaying MIC and MBC values equal to 2.5 mg/mL for all bacterial strains, except for P. aeruginosa ATCC 9027 (MIC and MBC values equal to 5 mg/mL and 10 mg/mL, respectively). All carvacrol codrugs 1-10 revealed good antifungal activity against C. albicans ATCC 10231. The cytotoxicity assay showed that the novel carvacrol codrugs did not produce human blood hemolysis at their MIC values except for codrugs 8 and 9. In particular, deepened experiments performed on carvacrol codrug 4 showed an interesting antimicrobial effect on the mature biofilm produced by E. coli ATCC 8739, respect to the carvacrol alone. The antimicrobial effects of carvacrol codrug 4 were also analyzed by TEM evidencing morphological modifications in S. aureus, E. coli, and C. albicans.

Conclusion

The current study presents an insight into the use of codrug strategy for developing carvacrol derivatives with antibacterial and antibiofilm potentials, and reduced cytotoxicity.

Details

Title
Carvacrol Codrugs: A New Approach in the Antimicrobial Plan
Author
Cacciatore, Ivana; Mara Di Giulio; Fornasari, Erika; Antonio Di Stefano; Cerasa, Laura Serafina; Marinelli, Lisa; Turkez, Hasan; Emanuela Di Campli; Soraya Di Bartolomeo; Robuffo, Iole; Cellini, Luigina
First page
e0120937
Section
Research Article
Publication year
2015
Publication date
Apr 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1672284043
Copyright
© 2015 Cacciatore et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.