Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Selenium disulfide that combines the advantages of S and Se elements is a new material for Li-chalcogen battery cathodes. However, like Li-S batteries, the shuttle effect seriously restricts the performance of Li-SeS2 batteries. In this work, we have synthesized a kind of nitrogen-rich lithophilic covalent organic framework (ATG-DMTZ-COF) as a separator coating material for Li-SeS2 batteries. Here, the N atom in the ATG-DMTZ-COF channel preferentially interacts with the lithium ion in the electrolyte to form N…Li bond, which significantly improves the diffusion coefficient of lithium ions during the charge and discharge. More importantly, we prove that the pore size of ATG-DMTZ-COF will decrease sharply because there is a large amount of TFSI- in the channel, and finally the shuttling of polysulfide and polyselenide is suppressed by the sieving effect. As a consequence, Li-SeS2 batteries using the ATG-DMTZ-COF separator coating show excellent performances with an initial discharge capacity of 1028.7 mAh g−1 at 0.5 C under a SeS2 loading of 2.38 mg cm−2. Furthermore, when the current density is 1C, the specific capacity of 404.7 mAh g−1 can be maintained after 700 cycles.

Details

Title
Cationic Covalent Organic Framework as Separator Coating for High-Performance Lithium Selenium Disulfide Batteries
Author
Wang, Jun 1 ; Jing-Ping, Ke 1 ; Zhen-Yi, Wu 1 ; Xiao-Na, Zhong 1 ; Song-Bai, Zheng 1 ; Yong-Jun, Li 2 ; Wen-Hua, Zhao 1 

 College of Information Engineering, Zhongshan Polytechnic, Zhongshan 528404, China; [email protected] (J.W.); [email protected] (J.-P.K.); [email protected] (Z.-Y.W.); [email protected] (X.-N.Z.); [email protected] (S.-B.Z.) 
 School of Lingnan Chinese Medicine and Pharmacy, Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China 
First page
931
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693959970
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.