Content area

Abstract

How should the efficiency of searching for real objects in real scenes be measured? Traditionally, when searching for artificial targets, e.g., letters or rectangles, among distractors, efficiency is measured by a reaction time (RT) × Set Size function. However, it is not clear whether the set size of real scenes is as effective a parameter for measuring search efficiency as the set size of artificial scenes. The present study investigated search efficiency in real scenes based on a combination of low-level features, e.g., visible size and target-flanker separation factors, and high-level features, e.g., category effect and target template. Visible size refers to the pixel number of visible parts of an object in a scene, whereas separation is defined as the sum of the flank distances from a target to the nearest distractors. During the experiment, observers searched for targets in various urban scenes, using pictures as the target templates. The results indicated that the effect of the set size in real scenes decreased according to the variances of other factors, e.g., visible size and separation. Increasing visible size and separation factors increased search efficiency. Based on these results, an RT × Visible Size × Separation function was proposed. These results suggest that the proposed function is a practicable predictor of search efficiency in real scenes.

Details

1009240
Business indexing term
Location
Company / organization
Title
Parametric Modeling of Visual Search Efficiency in Real Scenes
Publication title
PLoS One; San Francisco
Volume
10
Issue
6
First page
e0128545
Publication year
2015
Publication date
Jun 2015
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
1684995411
Document URL
https://www.proquest.com/scholarly-journals/parametric-modeling-visual-search-efficiency-real/docview/1684995411/se-2?accountid=208611
Copyright
© 2015 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-03
Database
ProQuest One Academic