[A & I plus PDF only]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2015
Abstract
(ProQuest: ... denotes formulae and/or non-USASCII text omitted) We examine particularly intense substorms (SML ...-2500 nT), hereafter called "supersubstorms" or SSS events, to identify their nature and their magnetic storm dependences. It is found that these intense substorms are typically isolated events and are only loosely related to magnetic storms. SSS events can occur during super (Dst ...-250 nT) and intense (-100 nT ... Dst > -250) magnetic storms. SSS events can also occur during nonstorm (Dst ... -50 nT) intervals. SSSs are important because the strongest ionospheric currents will flow during these events, potentially causing power outages on Earth. Several SSS examples are shown. SSS events appear to be externally triggered by small regions of very high density (~30 to 50 cm-3) solar wind plasma parcels (PPs) impinging upon the magnetosphere. Precursor southward interplanetary magnetic fields are detected prior to the PPs hitting the magnetosphere. Our hypothesis is that these southward fields input energy into the magnetosphere/magnetotail and the PPs trigger the release of the stored energy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer