Full Text

Turn on search term navigation

© 2015 Squartini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the context of agent based modeling and network theory, we focus on the problem of recovering behavior-related choice information from origin-destination type data, a topic also known under the name of network tomography. As a basis for predicting agents' choices we emphasize the connection between adaptive intelligent behavior, causal entropy maximization, and self-organized behavior in an open dynamic system. We cast this problem in the form of binary and weighted networks and suggest information theoretic entropy-driven methods to recover estimates of the unknown behavioral flow parameters. Our objective is to recover the unknown behavioral values across the ensemble analytically, without explicitly sampling the configuration space. In order to do so, we consider the Cressie-Read family of entropic functionals, enlarging the set of estimators commonly employed to make optimal use of the available information. More specifically, we explicitly work out two cases of particular interest: Shannon functional and the likelihood functional. We then employ them for the analysis of both univariate and bivariate data sets, comparing their accuracy in reproducing the observed trends.

Details

Title
Information Recovery in Behavioral Networks
Author
Squartini, Tiziano; Ser-Giacomi, Enrico; Garlaschelli, Diego; Judge, George
First page
e0125077
Section
Research Article
Publication year
2015
Publication date
May 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1689876703
Copyright
© 2015 Squartini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.