Liu et al. Advances in Dierence Equations (2015) 2015:193 DOI 10.1186/s13662-015-0529-0
R E S E A R C H Open Access
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0529-0&domain=pdf
Web End = Synchronization analysis of singular dynamical networks with unbounded time-delays
Song Liu*, Xiaoyan Li, Xian-Feng Zhou and Wei Jiang
*Correspondence: mailto:[email protected]
Web End [email protected] School of Mathematical Sciences, Anhui University, Hefei, 230601, P.R. China
Abstract
This paper deals with singular dynamical networks with non-delay coupling and unbounded time-delay coupling simultaneously, where the coupling conguration matrices are symmetric with zero row sums and nonnegative o-diagonal entries.
A sucient condition of synchronization is derived based on the Lyapunov-Krasovskii functional method and matrix analysis technique. A numerical example shows that our proposed method is simple and convenient in computation.
MSC: 34D06; 34D20
Keywords: synchronization; singular hybrid network; unbounded time-delay; matrix inequality
1 Introduction
In general, complex networks consist of a large number of nodes, in which every node is a fundamental cell with specic activity. In the past two decades, complex networks have attracted scholars increasing attention. Several famous network models, such as scale-free model [], small-world model [, ], which accurately characterize some important natural structures, have been presented. Synchronization is a universal phenomenon in various elds of science and society, and many signicant works have been obtained in []; Wu et al. investigate synchronization of an array of linearly coupled identical systems in []; research in [, ] shows that the structure of networks must have an inevitable eect on the ability and speed of synchronization. It is well known that time-delays widely exist in a large number of concrete systems, and coupled dynamical networks are often associated with time-delays due to the nite speeds of transmission and spreading as well as trac congestion. A lot of eorts have been made to study the synchronization of dynamical coupled systems with time-delays in [].
At the same time, we notice that a large number of practical networks, such as economic networks, power networks and so on, are singular dierential systems which are also named dierential-algebraic systems or descriptor systems. Singular systems have some particular complex properties which need not be considered in normal systems. In singular systems, impulse behavior may appear (if the index is greater than one) and initial value problem may also be unsolvable or have more than one solution, regularity is closely related to the solution behavior of the corresponding singular systems []. In or-
2015 Liu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Liu et al. Advances in Dierence Equations (2015) 2015:193 Page 2 of 9
der to make a singular system solvable with no impulse behavior and unique solution, the system must be regular and the initial condition must be compatible, which can be acquired similarly to the method presented in []. Due to the eect of time-delays, coupled correlative terms will inevitably appear if the system is divided into two subsystems including a dierential subsystem and an algebraic subsystem, which makes the problems become more complicated. Recently, Xiong et al. [] have investigated synchronization of singular hybrid coupled networks without time-delays, the original system is divided into two subsystems including a dierential subsystem and an algebraic subsystem, the authors present a sucient condition of global synchronization, but the presented method cannot be applied to singular delayed networks. Koo et al. [] and Li et al. [] investigate synchronization of singular complex dynamical networks with time-varying bounded delays. Sucient conditions for synchronization in terms of LMIs (linear matrix inequalities) are obtained, respectively. Motivated by this research, in this paper we study synchronization problem of singular dynamical networks with non-delay coupling and unbounded time-delay coupling simultaneously. Based on the Lyapunov-Krasovskii functional method, a simple sucient condition of synchronization is derived by using matrix analysis and matrix inequality technique. Our presented method can also be applied to more general dynamical networks including the networks presented in []. Finally, a numerical example shows that our presented method is simple and convenient in computation.
Notation: The notation used throughout this paper is fairly standard. Rn denotes an n-dimensional Euclidean space, Rnn is the set of all n n real matrices, In stands for the identity matrix of order n, UT means the transpose of a real matrix or vector U, x
denotes the Euclidean norm of a real vector x. For a real matrix A, max(A) and min(A) denote the maximal and minimal eigenvalue respectively. A = max(ATA) denotes the spectral norm of matrix A, A > B (or A B) means the symmetric matrix A B is positive denite (or positive semi-denite) and A B denotes the Kronecker product between matrix A and B.
2 Preliminaries
In this section, we now introduce some notations and preliminaries. Consider the singular delayed network consisting of N linearly and diusively coupled identical nodes, with full diagonal coupling, and each node is an n-dimensional dynamical oscillator which can be chaotic. The state equations of the network are described as
Exi(t) = Axi(t) + f xi(t), t + c
N
xj t i(t) , i = , , . . . , N, ()
where matrix E may be singular and < rank(E) = p < n, A Rnn is a constant matrix. xi = (xi, xi, . . . , xin)T Rn is the state vector of node i, f : Rn R Rn is a continuously dierentiable vector-valued function describing the dynamics of the nodes, ci > (i = , )
represent the coupling strength, the inner coupling link matrices are diagonal matrices, = diag{r, r, . . . , rn} with ri > ,
j= bij
= diag{r, r, . . . , rn} with ri > . The coupling time-delays i(t) > are dierentiable and
i(t) di < , i = , , . . . , N. The coupling conguration matrices B = (bij)NN and B = (bij)NN describe the topological structure of the
N
j=
bij xj(t)
+ c
Liu et al. Advances in Dierence Equations (2015) 2015:193 Page 3 of 9
network, in which bij (the entries bij are dened similarly) is dened as follows: if there is a connection from node i to node j (i = j), then bij > ; else bij = , the diagonal entries of matrix B are dened by
bii =
)x t (t) , ()
where x(t) = (xT(t), xT(t), . . . , xTN(t))T, x(t (t)) = (xT(t (t)), xT(t (t)), . . . , xTN(t N(t)))T, IN f (x(t), t) = (f T(x(t), t), f T(x(t), t), . . . , f T(xN(t), t))T.
To obtain our main results, the following lemmas will be used later.
Lemma . ([]) For any vectors x, y Rn and > , the inequality xTy xTx + yTy holds.
Lemma . ([]) Suppose that U and V are real symmetric matrices and U > , V ,
is a positive number. Then
U > V max VU < max U
3 Main results
In this section, the main results of this paper on asymptotical synchronization of singular delayed network () are derived. We rst introduce the following denition.
Denition . ([]) The singular delayed network () is said to achieve asymptotical synchronization if
xi(t) = s(t), i = , , . . . , N, as t , ()
where s(t) Rn is a synchronous solution of an isolated cell such that Es(t) = As(t) + f (s(t), t).
Remark . In [], the authors presented a sucient condition on the existence and uniqueness of solution of the system Ex(t) = Ax(t) + f (x(t), t).
N
j=,j =i
N
j=,j =i
bji, i = , , . . . , N.
We assume that network () is connected in the sense that there are no isolated clusters,i.e., matrices B and B are irreducible, hence the zero is an eigenvalue of B and B with multiplicity (see []). Furthermore, the eigenvalues can be arranged respectively as
= > N, = > N.
In virtue of the Kronecker product, system () can be written as
(IN E)x(t) = (IN A)x(t) + IN f x(t), t + c(B )x(t) + c( B
bij =
VU
< .
Liu et al. Advances in Dierence Equations (2015) 2015:193 Page 4 of 9
Theorem . Suppose that matrix B B is symmetric, then the synchronization state s(t) of the singular delayed network () is asymptotically stable if the linear time-varying singular delayed systems
Eyi = (A + J + ci )yi(t) + ci
yi t i(t) , i = , , . . . , N, ()
are asymptotically stable about their zero solutions, where s(t) is an asymptotical stable solution of an isolated cell, J is the Jacobian matrix of f (x(t), t) at s(t).
Proof To investigate the stability of the synchronous solution s(t), let
ei(t) = xi(t) s(t), i = , , . . . , N. ()
Then we obtain an error system in a compact form
(IN E)e(t) = IN (A + J) e(t) + c(B )e(t) + c( B
)e t (t) , ()
where e(t) = (eT(t), eT(t), . . . , eTN(t))T, e(t (t)) = (eT(t (t)), eT(t (t)), . . . , eTN(t N(t)))T.
Obviously, the dynamical network () will achieve asymptotical synchronization if the error system () is asymptotically stable about the zero solution.
Since matrix B B is symmetric, there exists an orthogonal matrix U RNN such that
UBUT = , U BUT = , ()
where = diag{, , . . . , N}, = diag{, , . . . , N} are both diagonal matrices.
Let y(t) = (UT In)e(t) = (yT(t), yT(t), . . . , yTN(t))T, we have
(IN E)y(t) = IN (A + J) y(t) + c( )y(t) + c(
)y t (t) . ()
yi t i(t) , i = , , . . . , N. ()
The proof is completed.
In order to make singular system () or () solvable with no impulse, we suppose that the following assumption holds.
Assumption There exist matrices Pi and positive-dene matrices Qi such that the following inequalities hold:
ETPi = PTiE , i = , , . . . , N, ()
(A + J)TP + PT(A + J) < ,
PTi(A + J + ci ) + (A + J + ci )TPi + iQi , i = , , . . . , N
Eyi(t) = (A + J + ci )yi(t) + ci
Namely,
()
Liu et al. Advances in Dierence Equations (2015) 2015:193 Page 5 of 9
and
Pi < diminQi, i = , , . . . , N, ()
where i = cr|i| (i = , , . . . , N), r = maxin ri.
Remark . The initial function space of dierential systems with unbounded delays is not completed. Let BC := {| : (, ] Rn, is bounded and continuous}, then (BC, ) is a Banach space. We also may dene a new complete initial function space.
Let x : [a, b] Rn, with the norm x := sups[a,b] |x(s)|. Denote C := {| : (, ] Rn, is continuous}, then C and BC are both linear spaces.
Let h C, h , and <
h(s) ds < . Denote Cnh := {|
h(s) ds < , C},
the norm of Cnh is dened as h :=
h(s) ds, hence Cnh is a linear subspace of
C and BC [squareimage] Cnh.
Lemma . ([]) (Cnh, h) is a Banach space.
Under condition (), it follows from [] that the pair (E, A + J + ci ) is regular and impulse free, hence the solution of Eq. () exists and is impulse free and unique on [t, )
for any admissible initial condition Cnh.
Theorem . Suppose that matrix B B is symmetric and Assumption holds, then the singular networks with unbounded coupled delays () will asymptotically synchronize in the sense of ().
Proof Construct the Lyapunov-Krasovskii functionals as:
Vi(t) = yTi(t)ETPiyi(t) + i
t
ti(t) yTi(s)Qiyi(s) ds. ()
We get the derivatives of Vi(t) along the trajectories of the ith equation () as follows:
Vi(t) = yTi(t)PTi (A + J + ci )yi(t) + ci
yi t i(t)
+ (A + J + ci )yi + ci
yi t i(t) T
Piyi(t) + iyTi(t)Qiyi(t) i
i(t) yT
i
t i(t) Qiyi t i(t)
= yTi(t) PTi (A + J + ci ) + (A + J + ci )TPi + iQi yi(t)
+ ciyTi(t)PTi
yi t i(t) i
i(t) yT
i
t i(t) Qiyi t i(t)
iyTi(t)Qiyi(t) + ciyTi(t)PTi
yi t i(t)
i( di)yTi t i(t) Qiyi t i(t) .
From Lemma ., we obtain
ciyTi(t)PTi
yi t i(t)
= ciyTi(t)PTi
Q
i Q
i
yi t i(t)
Liu et al. Advances in Dierence Equations (2015) 2015:193 Page 6 of 9
cr i( di)|
i|yTi(t)PTiQiPiyi(t) + icr|i|( di)yTi t i(t) Qiyi t i(t)
=
ii( di)yTi(t)PTiQiPiyi(t) +
ii( di)yTi t i(t) Qiyi t i(t) .
Then we get
Vi(t) iyTi(t)
i( di)PTiQiPi Qi
yi(t)
+ i( di)(i )yTi t i(t) Qiyi t i(t) .
From the denition of spectral norm, we know
max Q
i
di PTiQiPi
Q
i
=
di
max Q
i PTiQiPiQ
i
=
di
Q
i PiQ
i
di
Q
i
Pi
=
dimin(Qi) Pi .
Since PTiQiPi , from () we get
max Q
i
di PTiQiPi
Q
i
< .
Hence, there exist i > (i = , , . . . , N) such that
max Q
i
di PTiQiPi
Q
i
< i < .
Since PTiQiPi , from Lemma . we obtain
di PTiQiPi <
iQi.
Choose i < such that < ii < . Then
Mi := i
i( di)PTiQiPi Qi
< i
ii
Qi < ()
and
Ni := i( di)(i )Qi < . ()
Liu et al. Advances in Dierence Equations (2015) 2015:193 Page 7 of 9
Hence we obtain
Vi(t) yTi(t)Miyi(t) + yTi t i(t) Niyi t i(t) .
From () and (), we know Vi(t) (i = , , . . . , N) are negative denite. Therefore Eq. () is asymptotically stable about zero solution via the Lyapunov stability theory, then the singular delayed network () will achieve asymptotical synchronization.
Remark .
() If bij = (i.e., B = ) and i(t) = (t) is bounded, Eq. () is reduced to
Exi(t) = Axi(t) + f xi(t), t + c
N
j= bij
xj t (t) , i = , , . . . , N, ()
which is the network model presented in [, ]. () If bij = (i.e., B = ), Eq. () is reduced to
Exi(t) = Axi(t) + f xi(t), t + c
N
j=
bij xj(t), i = , , . . . , N, ()
which is the network model presented in [].
Hence, the model investigated in this paper may characterize many natural dynamical networks and our proposed method can also be applied to more general dynamical networks.
Remark . In reality, it is dicult to compute matrices Pi (i = , , . . . , N) and Qi (i = , , . . . , N) for a general complex model with a large number N of nodes or with a large dimension from conditions () and (). It should be pointed out that () and () cannot be solved directly by the LMI toolbox of Matlab. However, if matrix E is positive semi-denite and matrix A is negative denite, one can easily choose positive denite matrices Pi and Qi satisfying conditions ()-() (see the following numerical example). Comparing with [], our proposed method is simple and convenient in computation.
4 An illustrative example
In this section, a simple example is given to illustrate theoretical results and the presented conditions in Theorem . can be easily obtained. We consider the following singular complex network with six nodes (see Figure ) in which each node is connected to other nodes and which is described as
xi
xi
xi
=
xi
xi
xi
+
xi + xi xi
xi xi
, i = , , , , , ,
and the solution of the state equation can be written as
xi = ket k
et,
xi = ke t,
xi = k e
t,
Liu et al. Advances in Dierence Equations (2015) 2015:193 Page 8 of 9
Figure 1 Structure of the network.
which is asymptotically stable at s(t) = , where k, k are both constants. And the Jacobian is J = diag{, , }. For convenience, we assume coupled time-delays i(t) = .t, the coupling strength c = c = and the inner coupling matrices =
= I, the coupling
conguration matrices are
B = B =
,
and the eigenvalues are , , , , , .
One can choose Pi = I (i = , , , , , ), hence condition () holds. Matrices Qi can be chosen as
Qi =
, i = , , , , ,
and the minimal eigenvalue of Qi is , which shows that condition () is satised. Noting that di = ., hence condition () holds. Therefore the singular delayed network () will achieve asymptotical synchronization by Theorem ..
5 Conclusions
This paper investigates singular complex networks with non-delay coupling and unbounded time-delay coupling simultaneously. Based on the Lyapunov stability theory and matrix inequalities and singular system theory, a simple sucient condition of synchronization is derived, which can be easily realized and is simple and convenient in computation. The proposed method also can be applied to more general complex networks comparing with []. Finally, a simple example is given to illustrate the eectiveness of our theoretical results.
Competing interests
The authors declare that they have no competing interests.
Authors contributions
All authors contributed equally to the writing of this paper. All authors read and approved the nal manuscript.
Liu et al. Advances in Dierence Equations (2015) 2015:193 Page 9 of 9
Acknowledgements
This research is supported by the National Natural Science Foundation of China (11371027, 11326115, 11471015), Research Fund for the Doctoral Program of Higher Education of China (20133401120013), Program of College Natural Science of Anhui Province (KJ2013A032, KJ2011A020), Doctoral Starting Fund of Anhui University (023033190181), Young Scientist Fund of Anhui University (023033050055), Young Outstanding Teacher Fund of Anhui University (023033010264).
Received: 25 January 2015 Accepted: 5 June 2015
References
1. Barabsi, AL, Albert, R, Jeong, H: Scale-free characteristics of random networks: the topology of the world wide web. Physica A 281, 69-77 (2000)
2. Newman, MEJ, Watts, DJ: Scaling and percolation in the small-world network model. Phys. Rev. E 60(6), 7332-7342 (1999)
3. Watts, DJ, Strogatz, SH: Collective dynamics of small-world networks. Nature 393, 440-442 (1998)4. Barahnoa, ML, Pecora, M: Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002)5. Wang, QY, Duan, ZS, Chen, GR, Feng, ZS: Synchronization in a class of weighted complex networks with coupling delays. Physica A 387, 5616-5622 (2008)
6. Wang, XF, Chen, G: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 12, 187-192 (2002)7. Wang, XF, Chen, G: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I 49, 54-62 (2002)
8. Zhou, J, Xiang, L, Liu, ZR: Global synchronization in general complex delayed dynamical networks and its applications. Physica A 385, 729-742 (2007)
9. Lu, J, Cao, JD: Adaptive synchronization in tree-like dynamical networks. Nonlinear Anal., Real World Appl. 8, 1252-1260 (2007)
10. Wu, CW: Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling. IEEE Trans. Circuits Syst. II 52, 282-286 (2005)
11. Wu, CW, Chua, LO: Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I 42, 430-447 (1995)
12. Strogatz, SH: Exploding complex networks. Nature 410, 268-276 (2001)13. Liu, S, Zhou, X, Jiang, W, Fan, YZ: Adaptive exponential synchronization of coupled complex networks on general graphs. Abstr. Appl. Anal. 2013, 854794 (2013)
14. Li, CG, Chen, G: Synchronization in general complex dynamical networks with coupling delays. Physica A 343,
263-278 (2004)
15. Liu, B, Teo, KL, Liu, XZ: Global synchronization of dynamical networks with coupling time delays. Phys. Lett. A 368, 53-63 (2007)
16. Tua, LL, Lu, JA: Delay-dependent synchronization in general complex delayed dynamical networks. Comput. Math. Appl. 57, 28-36 (2009)
17. Wang, L, Dai, HP, Sun, YX: Synchronization criteria for a generalized complex delayed dynamical network model. Physica A 383, 703-713 (2007)
18. Liu, S, Li, XY, Jiang, W, Fan, YZ: Adaptive synchronization in complex dynamical networks with coupling delays for general graphs. Appl. Math. Comput. 219, 83-87 (2012)
19. Kunkel, P, Mehrmann, V: Dierential-Algebraic Equations. Eur. Math. Soc., Zrich (2006)20. Liu, S, Jiang, W: Asymptotic stability of nonlinear descriptor systems with innite delays. Ann. Dier. Equ. 26, 174-180 (2010)
21. Xiong, WJ, Ho, DWC, Cao, J: Synchronization analysis of singular hybrid coupled networks. Phys. Lett. A 372, 6633-6637 (2008)
22. Koo, JH, Ji, DH, Won, SC: Synchronization of singular complex dynamical networks with time-varying delays. Appl. Math. Comput. 217, 3916-3923 (2010)
23. Li, HJ, Ning, ZJ, Yin, YH, Tang, Y: Synchronization and state estimation for singular complex dynamical networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 18, 194-208 (2013)
24. Tan, MC: Asymptotic stability of nonlinear systems with unbounded delays. J. Math. Anal. Appl. 337, 1010-1021 (2008)25. Lu, GP, Ho, DWC: Generalized quadratic stability for continuous-time singular systems with nonlinear perturbation. IEEE Trans. Autom. Control 51(3), 818-823 (2006)
26. Wang, K, Huang, QC: Norm h and periodic solutions of Volterra integral-dierential equations. J. Northeast Norm.
Univ. 17(3), 7-15 (1985) (in Chinese)27. Fridman, E: Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273, 24-44 (2002)
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
The Author(s) 2015
Abstract
This paper deals with singular dynamical networks with non-delay coupling and unbounded time-delay coupling simultaneously, where the coupling configuration matrices are symmetric with zero row sums and nonnegative off-diagonal entries. A sufficient condition of synchronization is derived based on the Lyapunov-Krasovskii functional method and matrix analysis technique. A numerical example shows that our proposed method is simple and convenient in computation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





