Abstract
In this article, a new operational matrix method based on shifted Legendre polynomials is presented and analyzed for obtaining numerical spectral solutions of linear and nonlinear second-order boundary value problems. The method is novel and essentially based on reducing the differential equations with their boundary conditions to systems of linear or nonlinear algebraic equations in the expansion coefficients of the sought-for spectral solutions. Linear differential equations are treated by applying the Petrov-Galerkin method, while the nonlinear equations are treated by applying the collocation method. Convergence analysis and some specific illustrative examples include singular, singularly perturbed and Bratu-type equations are considered to ascertain the validity, wide applicability and efficiency of the proposed method. The obtained numerical results are compared favorably with the analytical solutions and are more accurate than those discussed by some other existing techniques in the literature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





