It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Laser Engineered Net Shaping (LENS) technique was combined with direct synthesis to fabricate L21-ordered Fe-Al-Ti based intermetallic alloys. It was found that ternary Fe-Al-Ti alloys can be synthesized using the LENS technique from a feedstock composed of a pre-alloyed Fe-Al powder and elemental Ti powder. The obtained average compositions of the ternary alloys after the laser deposition and subsequent annealing were quite close to the nominal compositions, but the distributions of the elements in the annealed samples recorded over a large area were inhomogeneous. No traces of pure Ti were observed in the deposited alloys. Macroscopic cracking and porosity were observed in all investigated alloys. The amount of porosity in the samples was less than 1.2 vol. %. It seems that the porosity originates from the porous pre-alloyed Fe-Al powders. Single-phase (L21), two-phase (L21-C14) and multiphase (L21-A2-C14) Fe-Al-Ti intermetallic alloys were obtained from the direct laser synthesis and annealing process. The most prominent feature of the ternary Fe-Al-Ti intermetallics synthesized by the LENS method is their fine-grained structure. The grain size is in the range of 3-5 μm, indicating grain refinement effect through the highly rapid cooling of the LENS process. The Fe-Al-Ti alloys synthesized by LENS and annealed at 1000 °C in the single-phase B2 region were prone to an essential grain growth. In contrast, the alloys annealed at 1000 °C in the two-phase L21-C14 region exhibited almost constant grain size values after the high-temperature annealing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer