It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, we develop a new model of a static game of incomplete information with a large number of players. The model has two key distinguishing features. First, the strategies are subject to threshold effects, and can be interpreted as dependent censored random variables. Second, in contrast to most of the existing literature, our inferential theory relies on a large number of players, rather than a large number of independent repetitions of the same game. We establish existence and uniqueness of the pure strategy equilibrium, and prove that the censored equilibrium strategies satisfy a near-epoch dependence property. We then show that the normal maximum likelihood and least squares estimators of this censored model are consistent and asymptotically normal. Our model can be useful in a wide variety of settings, including investment, R&D, labor supply, and social interaction applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer