It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, we report the synthesis and biological evaluation of picolylamide-based diselenides with the aim of developing a new series of diselenides with O***Se non-bonded interactions. The synthesis of diselenides was performed by a simple and efficient synthetic route. All the products were obtained in good yields and their structures were determined by 1H-NMR, 13C-NMR and HRMS. All these new compounds showed promising activities when tested in different antioxidant assays. These amides exhibited strong thiol peroxidase-like (TPx) activity. In fact one of the compounds showed 4.66 times higher potential than the classical standard i.e., diphenyl diselenide. The same compound significantly inhibited iron (Fe)-induced thiobarbituric acid reactive species (TBARS) production in rat's brain homogenate. In addition, the X-ray structure of the most active compound showed non-bonded interaction between the selenium and the oxygen atom that are in close proximity and may be responsible for the increased antioxidant activity. The present study provides evidence about the possible biochemical influence of nonbonding interactions on organochalcogens potency.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer