Abstract
Abstract
We propose a model independent approach for the analysis of interference effects in the process of QCD pair production of new heavy quarks of different species that decay into Standard Model particles, including decays via flavour changing neutral currents. By adopting as ansatz a simple analytical formula we show that one can accurately describe the interference between two different such particle pairs leading to the same final state using information about masses, total widths and couplings. A study of the effects on differential distributions is also performed showing that, when interference plays a relevant role, the distributions of the full process can be obtained by a simple rescaling of the distributions of either quark contributing to the interference term. We also present the range of validity of the analytical expression that we have found.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




