Full Text

Turn on search term navigation

Copyright © 2015 Yan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratio δ has received much attention, but most of the values of δ are very small (δ<0.1) or relatively small (δ<=0.5). As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES) turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.

Details

Title
Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio
Author
Wang, Yan; Dong, Quanlin; Wang, Pengfei
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1708129759
Copyright
Copyright © 2015 Yan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.