It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Malignant mesothelioma is an aggressive deadly pleural cancer overexpressing Ephrin A2 receptors which are biomarkers for malignant mesothelioma. The Ephrin A1 ligand binding to the Ephrin A2 receptor downregulates overexpression of the Ephrin A2 in malignant mesothelioma cells (MMC). Similarly, the YSA peptide can mimic the Ephrin A1 ligand and both could be suitable as targeting agents and tumor suppressing agents for MMC.
In this work, we conjugated the surface of nanoparticles with the YSA peptide and Ephrin A1 ligand to deliver paclitaxel with low solubility by targeting the MMC.
We have obtained nanoparticles ranging 188-278 nm with the Ephrin A1 surface conjugated nanoparticles having 57-90 µm smaller size compared to any the other four nanoparticle formulations we studied. Nanoparticles released 32% of the drug encapsu-lated by day 5 and showed slow sustained release afterwards with very minimal variation in drug release amount. This stable and sustained release profile of paclitaxel loaded na-noparticles provides the desired amount of drug supplied to cells.
Highest uptake (100%) was achieved by the Ephrin A1 conjugated nanoparticles (EPH NP) at 125 µg/ml concentration in 5 hours. The highest killing (71%) was achieved by the YSA peptide conjugated and paclitaxel loaded nanoparticles (YSA-PTX NP) at 1.5 µg/ml over 48 hours. This is 32% more cytotoxicity with 90% less of the drug used compared to free paclitaxel.
Based on combined results of efficient targeting ability and improved cytotoxici-ty, surface conjugated and paclitaxel loaded nanoparticle formulations stands out with YSA-PTX NP as being one step further. This is ideal and promising in that it has signifi-cant potential for in vivo targeted delivery.
In this study, we successfully prepared particles in an ideal nano-range with suc-cessful targeting agent conjugation and sufficient anticancer drug encapsulation. They are suitable and ideal for cancer diagnoses and treatments. The targeting ability of the Ephrin A1 ligand and YSA peptide is already proven. This work has introduced successful for-mulation of PLGA nanoparticles with high loading efficiency as a great potential for di-agnosis and treatment of many cancer types overexpressing the Ephrin A2 receptors. This work further will be carried by in vitro/ in vivo studies of the Ephrin A2 overexpressing other cancer cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





