Abstract
In this paper, an analysis is made on the laminar jet flow and heat transfer of a copper-water nanofluid over an impermeable resting wall. With the homogeneous model (Maïga et al. in Int. J. Heat Fluid Flow 26(4): 530-546, 2005), the Navier-Stokes equations describing this heat fluid flows are reduced to a set of differential equations via similarity transformations. An implicitly analytical solution overlooked in previous publications is discovered for the velocity distribution. We further present the explicit solutions with high precision for both the velocity and the temperature distributions. A mathematical analysis shows that those explicit solutions have exponential behaviors at far field. Besides, the effects of the volumetric fraction parameter and the dimensionless heat transfer parameter γ on the velocity and temperature profiles, as well as on the reduced local skin friction coefficient and the reduced Nusselt number, are examined in detail.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





