Full Text

Turn on search term navigation

© 2015 Gourand et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In quantitative PET measurements, the analysis of radiometabolites in plasma is essential for determining the exact arterial input function. Diphenyl sulfide compounds are promising PET and SPECT radioligands for in vivo quantification of the serotonin transporter (SERT) and it is therefore important to investigate their radiometabolism. We have chosen to explore the radiometabolic profile of [11C]MADAM, one of these radioligands widely used for in vivo PET-SERT studies. The metabolism of [11C]MADAM/MADAM was investigated using rat and human liver microsomes (RLM and HLM) in combination with radio-HPLC or UHPLC/Q-ToF-MS for their identification. The effect of carrier on the radiometabolic rate of the radioligand [11C]MADAM in vitro and in vivo was examined by radio-HPLC. RLM and HLM incubations were carried out at two different carrier concentrations of 1 and 10 μM. Urine samples after perfusion of [11C]MADAM/MADAM in rats were also analysed by radio-HPLC. Analysis by UHPLC/Q-ToF-MS identified the metabolites produced in vitro to be results of N-demethylation, S-oxidation and benzylic hydroxylation. The presence of carrier greatly affected the radiometabolism rate of [11C]MADAM in both RLM/HLM experiments and in vivo rat studies. The good concordance between the results predicted by RLM and HLM experiments and the in vivo data obtained in rat studies indicate that the kinetics of the radiometabolism of the radioligand [11C]MADAM is dose-dependent. This issue needs to be addressed when the diarylsulfide class of compounds are used in PET quantifications of SERT.

Details

Title
[11C]MADAM Used as a Model for Understanding the Radiometabolism of Diphenyl Sulfide Radioligands for Positron Emission Tomography (PET)
Author
Gourand, Fabienne; Amini, Nahid; Jia, Zhisheng; Stone-Elander, Sharon; Guilloteau, Denis; Barré, Louisa; Halldin, Christer
First page
e0137160
Section
Research Article
Publication year
2015
Publication date
Sep 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1719285269
Copyright
© 2015 Gourand et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.