Full Text

Turn on search term navigation

Copyright © 2015 Minoru Yamashita and Zubair Bin Khalil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Deformation behavior and energy absorbing performance of the press formed aluminum alloy A5052 shells were investigated to obtain the basic information regarding the mutual effect of the shell shape and the indentor. Flat top and hemispherical shells were indented by the flat- or hemispherical-headed indentor. Indentation force in the rising stage was sharper for both shell shapes when the flat indentor was used. Remarkable force increase due to high in-plane compressive stress arisen by the appropriate tool constraint was observed in the early indentation stage, where the hemispherical shell was deformed with the flat-headed indentor. This aspect is preferable for energy absorption performance per unit mass. Less fluctuation in indentation force was achieved in the combination of the hemispherical shell and similar shaped indentor. The consumed energy in the travel length of the indentor equal to the shell height was evaluated. The increase ratio of the energy is prominent when the hemispherical indentor is replaced by a flat-headed one in both shell shapes. Finite element simulation was also conducted. Deformation behaviors were successfully predicted when the kinematic hardening plasticity was introduced in the material model.

Details

Title
Deformation Behavior of Press Formed Shell by Indentation and Its Numerical Simulation
Author
Yamashita, Minoru; Zubair Bin Khalil
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
23144912
e-ISSN
23144904
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1722853880
Copyright
Copyright © 2015 Minoru Yamashita and Zubair Bin Khalil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.