Abstract
Background
We have made an attempt to understand the main mechanism which controls the conductive heat transfer in the Årvollskogen borehole. This has been done in order to determine the 2D subsurface temperature distribution within the deep-seated crystalline rocks and, therefore, to estimate the geothermal potential in the Moss area near Oslo.
Methods
An integrated 2D density, magnetic and conductive thermal analysis has been performed in order to recognise the major structural features and thermal pattern of the crystalline crust.
Results
Based on 2D density and magnetic modelling, a 2D structural model has been constructed for the Moss area. This 2D model has been used during the 2D thermal modelling. The results of the 2D thermal modelling demonstrate that a significant decrease of the Earth's surface temperatures during the last glaciations still affects the subsurface thermal field of the study area in terms of reduced temperatures within the uppermost crystalline crust. The modelled temperatures are characterised by almost horizontal isotherms without considerable vertical disturbances, reflecting the predominance of subhorizontal layering within the crystalline crust of the Moss area.
Conclusion
The 2D density and magnetic modelling, with consideration of all available geological and structural data, allows us to reveal the deep structure of the crystalline crust within the Moss area. According to the results of the 2D thermal modelling, the predicted temperatures within the upper crystalline crust are in the range of expected values for this part of Fennoscandia.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




