Full text

Turn on search term navigation

Copyright © 2015 Seunghan Oh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Titanium (Ti) possesses excellent properties for use in dental implants but has low osteogenic surface properties that result in limiting rapid osseointegration. The physiological interaction between the surface of the implant material and bone cells, especially osteoclasts, is a crucial factor in determining successful osseointegration. However, the details of such an interaction remain elusive. Here, we demonstrated that nanotopography on the Ti surface is a crucial factor for modulating intracellular signal transduction in bone marrow-derived macrophages (BMMs). To define this, intracellular Ca2+ and ROS were simultaneously measured in BMMs that were seeded on polished Ti and TiO2 nanotubes. We found that UV photocatalysis of TiO2 immediately elicits intracellular calcium concentration ([Ca2+]i) increase and intracellular reactive oxygen species concentration ([ROS]i) reduction in cells on TiO2 nanotubes. UV photocatalysis-mediated [Ca2+]i increase is dependent on extracellular and intracellular ROS generation. Furthermore, extracellular Ca2+ influx through voltage-gated calcium channels (VGCCs) is critical for the UV photocatalysis-mediated [Ca2+]i increase, while phospholipase C (PLC) activation is not required. Considering the physiological roles of Ca2+ signaling in BMMs and osteoclastogenesis, nanotopography on the Ti surface should be considered an important factor that can influence successful dental implantation.

Details

Title
UV Photocatalysis of Bone Marrow-Derived Macrophages on TiO2 Nanotubes Mediates Intracellular Ca2+ Influx via Voltage-Gated Ca2+ Channels
Author
Oh, Seunghan; Choi, Eun-Joo; Erkhembaatar, Munkhsoyol; Kim, Min Seuk
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1726683487
Copyright
Copyright © 2015 Seunghan Oh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.