Abstract
We carry out ADM splitting in the Lagrangian formulation and establish a procedure in which (almost) all of the unphysical components of the metric are removed by using the 4D diffeomorphism and the measure-zero 3D symmetry. The procedure introduces a constraint that corresponds to the Hamiltonian constraint of the Hamiltonian formulation, and its solution implies that the 4D dynamics admits an effective description through 3D hypersurface physics. As far as we can see, our procedure implies potential renormalizability of the ADM formulation of 4D Einstein gravity for which a complete gauge-fixing in the ADM formulation and hypersurface foliation of geometry are the key elements. If true, this implies that the alleged unrenormalizability of 4D Einstein gravity may be due to the presence of the unphysical fields. The procedure can straightforwardly be applied to quantization around a flat background; the Schwarzschild case seems more subtle. We discuss a potential limitation of the procedure when applying it to explicit time-dependent backgrounds.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





