Full Text

Turn on search term navigation

Copyright © 2015 Xinhan Meng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper proposes a hybrid modular multilevel converter (MMC) topology based on mismatched-cascade mechanism. The blocking conditions of different submodule (SM) structures under dc fault are analyzed and a series double submodule is presented. With series-double submodules and mismatched-cascade submodules, the proposed hybrid MMC can ride-through the dc side short-circuit fault and provide an output voltage with the feature of low harmonic content. This hybrid MMC topology can be used in the VSC based multiterminal dc (VSC-MTDC) transmission system. The dc fault ride-through properties of the new structure and the total harmonic distortion (THD) are analyzed compared with the previous full-bridge and clamp-double architectures. An appropriate fault blocking procedure is presented, and a typical four-terminal dc transmission simulation system is given in the power system simulation software. Finally, simulation of steady-state and dc bipolar short-circuit fault verifies that the MTDC system based on this new hybrid MMC topology is stabilized and can block the dc fault and return the nonfault parts to normal.

Details

Title
A Hybrid MMC Topology with dc Fault Ride-Through Capability for MTDC Transmission System
Author
Meng, Xinhan; Ke-Jun, Li; Wang, Zhuodi; Wenning, Yan; Zhao, Jianguo
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1728602173
Copyright
Copyright © 2015 Xinhan Meng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.