Full Text

Turn on search term navigation

Copyright © 2015 Jing Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In wagon end wall system under the action of granular media, the model of the wall is the result of multiple factors. To figure out how the key factors act, the large amplitude vibration together with the contribution from the action of granular media to build the nonlinear dynamics equation of the wagon end wall has been taken into account. In this paper, the effects of varying damping, added mass, and force due to the action of granular media on the patterns of movement and response performance were discussed in detail. Furthermore, the finite element model of end wall-granular media was established. It proves that the theoretical result is correct compared with the FEM results. It indicates that the resonance frequency of the wall declines with the increase of the height of granular media, while the frequency increases with the increase of the particle size of granular media. The nonlinear dynamics of the wall is less affected by the height ratio and particle size of granular media, while it is greatly affected by the height and the thickness of wall, which should be seriously considered in structural design of the wagon.

Details

Title
Nonlinear Dynamic Analysis of Railway Wagon End Wall under the Action of Granular Media
Author
Wang, Jing; Zhang, Qichang; Yu, Yuebin; Han, Jianxin; Li, Dong
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1728602306
Copyright
Copyright © 2015 Jing Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.