Abstract
This paper presents an electrochemical sensing approach that enables quantitative detection of three major catecholamine hormones from a mixture by specifically employing a chemically-modified microelectrode array with [alpha]-, [beta]- and γ-cyclodextrin (CD) 'catchers' holding unique physical matching (size and shape) as well as chemical enticing (stereochemistry and surface charge) properties. The developed neurotransmitter sensor has selectively identified L-tyrosine, dihydroxyphenylalanine (L-DOPA) and dopamine in the absence of ascorbic acid. It exhibited the relatively linear sensitivities to each neurotransmitter with logarithmically increasing concentrations range of 5[mu]M-10mM, while demonstrating stability up to 6 hours from the fabrication and the average accuracy of 91.2%.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




