1. Introduction
The term “laser” is often connected with precision, future, and innovation. Only very few other areas have shown such a rapid and enormous development over the last years as medical laser applications. High-tech laser acupuncture [1], intravenous laser blood irradiation [2], and noninvasive and invasive laser needle stimulation [1–3] are only some of the future-oriented laser therapy options in medicine.
Our research group was the first to investigate violet laser acupuncture (405 nm). Important contributions on this topic were published between 2010 and 2012 [4–8]. The most important difference between violet and, for example, red laser (658 nm) is the penetration depth (405 nm: 1-2 mm; 658 nm: 3-4 cm) on the one hand and the fact that the entire energy of the violet laser is absorbed already at the skin surface on the other hand. In practical terms, this means that the red laser cannot be felt, whereas the violet laser can, thus inducing a stronger deqi sensation [9].
The aim of this needle-controlled, randomized crossover study was to investigate neurovegetative parameters like heart rate (HR) and heart rate variability (HRV) in two different sessions using two different acupoints in healthy volunteers.
2. Materials and Methods
2.1. Stimulation Methods
2.1.1. Manual Needle Acupuncture
Needle acupuncture was performed with single-use sterile needles (0.30 × 30 mm, Huan Qiu, Suzhou, China). After disinfecting the skin at the chosen acupoint(s) (see below), the needle was inserted and stimulated clockwise and counterclockwise for 15 seconds each, with two rotations per second, resulting in 30 rotations [10]. After ten minutes, the needle was removed.
2.1.2. Red Laser
The red laser needle radiation (658 nm) was coupled into optical fibers, and the laser needles were arranged at distal ends of the optical fibers of a Laserneedle-touch system (Laserneedle GmbH, Berlin, Germany; see Figure 1). Output power of each laser needle was 40 mW. The fiber core diameter was about 500 μm. The time of irradiation was 10 minutes, resulting in an energy density of about 20 J/cm² per acupoint. A continuous wave (cw) mode was applied. The needles were placed vertically on the skin using special applicators, triggering painless and nonperceptible stimulation at the acupoint. The method is described in detail in previous publications [11].
[figure omitted; refer to PDF]2.1.3. Violet Laser
Noninvasive violet optical laser needles (wavelength: 405 nm, output power 110 mW, laser needle spot diameter 500 μm, duration: 10 min, cw-mode) were also fixed onto the skin, but not inserted. The same laser needle system described above was used. Optical energy density was very high (range: kJ/cm²). More details concerning the technical parameters of laser needle acupuncture can also be found in recent publications [12].
2.2. Neurovegetative Monitoring
The two neurovegetative parameters were recorded using an HRV Medilog AR12 (Huntleigh Healthcare, Cardiff, UK; and Leupamed GmbH, Graz, Austria) system. This system is designed for a monitoring period up to 24 hours. The sampling rate of the recorder is 4096 Hz, so that R waves can be detected extremely accurately. Three “Skintact Premier F-55” ECG electrodes (Leonhard Lang GmbH, Innsbruck, Austria) were fixed on the chest. All raw data are stored digitally on special memory cards.
HRV is measured as the percentage change in sequential chamber complexes (RR intervals) in the ECG. HRV can be quantified over time using registration of percentage changes in RR intervals in the time domain as well as the changes in the frequency range by analysis of electrocardiographic power spectra. Parameters are recommended by the task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology [13]. Calculation of ECG power spectra is thought to provide an understanding of the effects of sympathetic and parasympathetic systems on HRV and is used also in acupuncture research [13–23]. Early work pointed out a few bands in the spectrum of HRV that could be interpreted as markers of physiological relevance. Associated mechanisms are thermoregulation which can be found in the very low frequency band, blood pressure and respiratory effects [13]. To the best of our knowledge, there are no scientific results concerning laser acupuncture and long-lasting thermoregulatory effects which might be reflected in HRV.
2.3. Volunteers
The investigations were performed in eleven healthy volunteers (M/F, 3/8) with a mean age ± SD of
2.4. Acupuncture Points
The following acupuncture points were used in our study: Baihui (GV20) and Neiguan (PC6) (see Figures 2(a) and 2(b)). Baihui is one of the most important acupoints of the Du meridian (governing vessel) and commonly used in neurology and psychiatry [24]. It is located on the continuation of the line connecting the lowest and highest points of the ear, on the median line of the head, 7 cun above the posterior hairline, and 5 cun behind the anterior hairline [25]. Neiguan is located on the palmar side of the forearm, on the line connecting Quze (PC3) and Daling (PC7), 2 cun proximal to the transverse crease of the wrist, and between the tendons of m. palmaris longus and m. flexor carpi radialis [26]. This point was stimulated bilaterally (see Figure 2(b)). Its main indications are cardiac pain, palpitation, oppressed feeling on the chest, vomiting, epilepsy, mania, and febrile diseases.
[figures omitted; refer to PDF]
2.5. Measurement Procedure
The procedure was divided into three parts: violet laser, red laser, or needle acupuncture, which were performed in the same subjects in a randomized order. Between the different stimulation modalities, there was a break of at least 10 min. Each of the acupoints described above was tested in all subjects in separate sessions on two different days (cross-over), also in randomized order. The participants were lying comfortably on a bed during the entire investigation.
The measurement procedure, and the 5-minute segments (altogether 20 min) are shown in Figure 3.
[figure omitted; refer to PDF]2.6. Statistical Analysis
Data were analyzed with one-way repeated measures analysis of variance (ANOVA; SigmaPlot 12.0, Systat Software, Chicago, IL, USA), and the Tukey test was used for post hoc analysis. The level of significance was defined as
3. Results
Figure 4 shows HR values from the measurements. During and after stimulation of the Baihui acupoint, HR decreased; however, the effect was significant only during and after needle and red laser stimulation. Stimulation of Neiguan did not induce any significant changes in HR.
[figure omitted; refer to PDF]The values of total HRV of all 11 healthy volunteers are summarized in Figure 5. Neither needle nor red laser nor violet laser stimulation at the Baihui acupoint induced significant changes in HRV, although HR decreased during and after all three stimulation modalities (cf. Figure 4). However, violet laser stimulation of the Neiguan acupoints showed a significant increase during the second half of the stimulation phase (d2) in comparison to the baseline values (b) and also to the first half of the stimulation phase (d1). It is interesting that needle and red laser stimulation did not induce similar effects.
[figure omitted; refer to PDF]4. Discussion
Acupuncture, an orientalmedicine technique that can be traced back at least 2,500 years, is gaining popularity as an alternative and complementary intervention in the Western world. According to traditional Chinese medicine (TCM), acupoints are distributed along meridians beneath the body’s surface [27]. In TCM, the single acupuncture points will often have different effects, although they are used in the treatment of the same disease. When investigating the effectiveness of acupuncture on certain diseases, acupoint combinations or schemes are usually used. There are only few scientific publications dealing with the basic investigation of the effects of only one or two acupoints. There are even fewer studies comparing one single point with another single point, using different stimulation methods in the same persons, as performed in this study.
Baihui (GV20) is one of the most important acupoints of the entire meridian acupoint system. It was reported that electroacupuncture stimulation at GV20 increased the cerebral perfusion in the cerebral cortex which was suppressed in endothelial nitric oxide synthase knockout mice [28] and also increased cerebral blood flow in a model of ischemic brain injury in rats [29]. There were also reports of acupuncture stimulation of GV20 working well in lowering blood pressure not only in hypertension patients [30] and healthy subjects [31] but also in spontaneously hypertensive rats [32]. Similar effects may be relevant for decreasing abnormally elevated glutamate and acetylcholine levels in the lesioned side of the striatum [33]. Another aspect of this study on the effect of GV20 was that the point was ascribed the ability to calm and stabilize emotions [33]. In the clinical procedure for patients with sleep disturbances, Baihui is the most commonly used acupuncture point [34, 35]. Acupuncture on GV20 mitigated the anxiety symptoms of women undergoing in vitro fertilization [36] and patients during dental treatment [37]. GV20 was found to have the ability of vasodilatation and reduction of sympathetic activity in the stress response [28–32]. In the present study, we found GV20 to have the effect of decreasing HR, which is in accordance with the previously mentioned effects.
Neiguan (PC6) is also a classic acupuncture point in TCM. It is considered to be effective when treating cardiovascular disorders. Accumulating scientific evidence has recently shown that PC6 could modulate cardiovascular functions, possibly through activation of the rostral ventrolateral medullar (RVLM) area [38, 39]. It was also reported that stimulation of PC6 decreased the extent of myocardial ischemia by means of reducing the myocardial oxygen demand in animals, and it reduced sympathoexcitatory cardiovascular reflex responses, partly through an effect on the RVLM [40, 41]. Another study suggested that PC6 and ST36 both affected cardiac activities in healthy volunteers [42]. In reports from patients suffering from circadian rhythm disorders, laser acupuncture stimulation applied on PC6 increased vagal activity and suppression of cardiac sympathetic nerves [43]. However, another study suggested that HRV was not influenced by laser needle acupuncture at the Neiguan point (PC6) [44]. This is similar to the observations in our experiment. Further studies concerning possible long-term effects of different kinds of lasers on neurovegetative parameters are desirable.
5. Conclusions
The following conclusions can be drawn from the results of this study.
(i)
Needle and red laser stimulation of the Baihui acupoint decrease heart rate in human subjects significantly.
(ii)
Only violet laser stimulation at the Neiguan acupoint induces a significant increase of total heart rate variability. This is even more interesting because of the fact that at the same time HR did not change significantly.
Conflict of Interests
The authors declare to have no conflict of interests.
[1] G. Litscher, "Integrative laser medicine and high-tech acupuncture at the Medical University of Graz, Austria, Europe," Evidence-Based Complementary and Alternative Medicine, vol. 2012,DOI: 10.1155/2012/103109, 2012.
[2] W. He, G. Litscher, X. Wang, X. Jing, H. Shi, H. Shang, "Intravenous laser blood irradiation, interstitial laser acupuncture, and electroacupuncture in an animal experimental setting: preliminary results from heart rate variability and electrocorticographic recordings," Evidence-Based Complementary and Alternative Medicine, vol. 2013,DOI: 10.1155/2013/169249, 2013.
[3] G. Litscher, X. Y. Gao, L. Wang, B. Zhu, High-Tech Acupuncture and Integrative Laser Medicine, 2012.
[4] G. Litscher, T. Huang, L. Wang, W. Zhang, "Violet laser acupuncture—part 1: effects on Brain Circulation," JAMS Journal of Acupuncture and Meridian Studies, vol. 3 no. 4, pp. 255-259, DOI: 10.1016/S2005-2901(10)60045-3, 2010.
[5] L. Wang, T. Huang, W. Zhang, G. Litscher, "Violet laser acupuncture—part 2: effects on peripheral microcirculation," JAMS Journal of Acupuncture and Meridian Studies, vol. 4 no. 1, pp. 24-28, DOI: 10.1016/S2005-2901(11)60004-6, 2011.
[6] G. Litscher, L. Wang, T. Huang, W. Zhang, "Violet laser acupuncture—part 3: a pilot study on the potential effects on temperature distribution," Journal of Acupuncture and Meridian Studies, vol. 4 no. 3, pp. 164-167, 2011.
[7] G. Litscher, L. Wang, I. Gaischek, X. Y. Gao, "Violet laser acupuncture—part 4: acute effects on human arterial stiffness and wave reflection," Journal of Acupuncture and Meridian Studies, vol. 4 no. 3, pp. 168-174, 2011.
[8] W. He, D. Wedig, L. Wang, I. Gaischek, G. Litscher, "Violet laser acupuncture—part 5: an investigation of different stimulation frequencies on heart rate and variability," Journal of Acupuncture and Meridian Studies, vol. 5 no. 6, pp. 290-294, 2012.
[9] G. Litscher, "Yes, there is deqi sensation in laser acupuncture," Evidence-Based Complementary and Alternative Medicine, vol. 2013,DOI: 10.1155/2013/198254, 2013.
[10] L. Wang, J. Valentini, K. Sugimoto, W. Cheng, G. Cheng, H. Geng, "Biomedical teleacupuncture between China and Austria using heart rate variability, part 1: poststroke patients," Evidence-Based Complementary and Alternative Medicine, vol. 2011,DOI: 10.1155/2011/782489, 2011.
[11] G. Litscher, D. Schikora, Laserneedle Acupuncture. Science and Practice, 2005.
[12] G. Litscher, G. Opitz, "Technical parameters for laser acupuncture to elicit peripheral and central effects: state-of-the-art and short guidelines based on results from the Medical University of Graz, the German Academy of Acupuncture, and the scientific literature," Evidence-Based Complementary and Alternative Medicine, vol. 2012,DOI: 10.1155/2012/697096, 2012.
[13] Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, "Heart rate variability. Standards of measurement, physiological interpretation, and clinical use," European Heart Journal, vol. 17 no. 3, pp. 354-381, 1996.
[14] X. Y. Gao, K. Liu, B. Zhu, G. Litscher, "Sino-European transcontinental basic and clinical high-tech acupuncture studies, part 1: auricular acupuncture increases heart rate variability in anesthetized rats," Evidence-Based Complementary and Alternative Medicine, vol. 2012,DOI: 10.1155/2012/817378, 2012.
[15] G. Litscher, G. Y. Cheng, W. P. Cheng, L. Wang, Q. Q. Niu, X. Feng, ".Sino-European transcontinental basic and clinical high-tech acupuncture studies, part 2: acute stimulation effects on heart rate and its variability in patients with insomnia," Evidence-Based Complementary and Alternative Medicine, vol. 2012,DOI: 10.1155/2012/916085, 2012.
[16] X. Y. Gao, G. Litscher, K. Liu, B. Zhu, "Sino-European transcontinental basic and clinical high-tech acupuncture studies, part 3: violet laser stimulation in anesthetized rats," Evidence-Based Complementary and Alternative Medicine, vol. 2012,DOI: 10.1155/2012/402590, 2012.
[17] P. J. Maud, C. Foster, Physiological Assessment of Human Fitness, 2006.
[18] B. L. T. Mainardi, "On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods," Philosophical Transactions of the Royal Society A, vol. 367 no. 1887, pp. 255-275, DOI: 10.1098/rsta.2008.0188, 2009.
[19] M. W. Chapleau, R. Sabharwal, "Methods of assessing vagus nerve activity and reflexes," Heart Failure Reviews, vol. 16 no. 2, pp. 109-127, DOI: 10.1007/s10741-010-9174-6, 2011.
[20] T. G. Buchman, P. K. Stein, B. Goldstein, "Heart rate variability in critical illness and critical care," Current Opinion in Critical Care, vol. 8 no. 4, pp. 311-315, DOI: 10.1097/00075198-200208000-00007, 2002.
[21] G. Litscher, D. Litscher, "Fire of Life’analysis of heart rate variability during alpine skiing in Austria," North American Journal of Medical Sciences, vol. 2 no. 6, pp. 258-262, 2010.
[22] G. Litscher, "Transcontinental and translational high-tech acupuncture research using computer-based heart rate and “fire of life” heart rate variability analysis," JAMS Journal of Acupuncture and Meridian Studies, vol. 3 no. 3, pp. 156-164, DOI: 10.1016/S2005-2901(10)60031-3, 2010.
[23] G. Litscher, "Modernization of traditional acupuncture using multimodal computer-based high-tech methods-recent results of blue laser and teleacupuncture from the Medical University of Graz," JAMS Journal of Acupuncture and Meridian Studies, vol. 2 no. 3, pp. 202-209, DOI: 10.1016/S2005-2901(09)60056-X, 2009.
[24] E. Y. Shen, F. J. Chen, Y. Y. Chen, M. F. Lin, "Locating the acupoint Baihui (GV20) beneath the cerebral cortex with MRI reconstructed 3D neuroimages," Evidence-Based Complementary and Alternative Medicine, vol. 2011,DOI: 10.1093/ecam/neq047, 2011.
[25] G. Stux, B. Pomeranz, Basics of Acupuncture, 1998.
[26] J. Yan, Skills With Illustrations of Chinese Acupuncture and Moxibustion, 2006.
[27] W. Ma, H. Tong, W. Xu, J. Hu, N. Liu, H. Li, L. Cao, "Perivascular space: possible anatomical substrate for the meridian," Journal of Alternative and Complementary Medicine, vol. 9 no. 6, pp. 851-859, 2003.
[28] J. H. Kim, K. H. Choi, Y. J. Jang, S. S. Bae, B. C. Shin, B. T. Choi, "Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice," PLoS ONE, vol. 8 no. 2, 2013.
[29] Y. S. Dong, S. L. Xing, "Electroacupuncture increased cerebral blood flow and reduced ischemic brain injury: dependence on stimulation intensity and frequency," Journal of Applied Physiology, vol. 111 no. 6, pp. 1877-1887, 2011.
[30] F. Zhou, J. Guo, J. Cheng, G. Wu, Y. Xia, "Effect of acupuncture needle-retention duration at Baihui (GV 20) and sishencong (EX-HN 1) on blood pressure in hypertension patients," Zhen Ci Yan Jiu, vol. 37 no. 3, pp. 233-236, 2012.
[31] N. X. Zhao, R. L. Guo, Q. Y. Ren, R. F. Guo, N. Pan, "Influence of moxibustion of baihui (GV 20) on hemodynamics of common carotid artery in healthy subjects," Zhen Ci Yan Jiu, vol. 32 no. 4, pp. 252-254, 2007.
[32] M. S. Lee, H. S. Hwang, Y. S. Kim, Y. H. Ryu, J. E. Lee, Y. S. Lee, E. J. Yang, S. M. Choi, "Electroacupuncture delays hypertension development through enhancing NO/NOS activity in spontaneously hypertensive rats," Evidence-Based Complementary and Alternative Medicine, vol. 2011,DOI: 10.1093/ecam/nen064, 2011.
[33] Z. Sun, J. Jia, X. Gong, Y. Jia, J. Deng, X. Wang, "Inhibition of glutamate and acetylcholine release in behavioral improvement induced by electroacupuncture in parkinsonian rats," Neuroscience Letters, vol. 520 no. 1, pp. 32-37, 2012.
[34] W. F. Yeung, K. F. Chung, S. P. Zhang, T. G. Yap, A. C. K. Law, "Electroacupuncture for primary insomnia: a randomized controlled trial," Sleep, vol. 32 no. 8, pp. 1039-1047, 2009.
[35] W. F. Yeung, K. F. Chung, K. C. Tso, S. P. Zhang, J. Zhang, L. M. Ho, "Electroacupuncture for residual insomnia associated with major depressive disorder: a randomized controlled trial," Sleep, vol. 34 no. 6, pp. 807-815, DOI: 10.5665/SLEEP.1056, 2011.
[36] D. Isoyama, E. B. Cordts, A. M. de Souza van Niewegen, W. de Almeida Pereira de Carvalho, S. T. Matsumura, C. P. Barbosa, "Effect of acupuncture on symptoms of anxiety in women undergoing in vitro fertilisation: a prospective randomised controlled study," Acupuncture in Medicine, vol. 30 no. 2, pp. 85-88, 2012.
[37] P. Rosted, M. Bundgaard, S. Gordon, A. M. Lynge Pedersen, "Acupuncture in the management of anxiety related to dental treatment: a case series," Acupuncture in Medicine, vol. 28 no. 1,DOI: 10.1136/aim.2009.001933, 2010.
[38] P. Li, S. C. Tjen-A-Looi, J. C. Longhurst, "Excitatory projections from arcuate nucleus to ventrolateral periaqueductal gray in electroacupuncture inhibition of cardiovascular reflexes," American Journal of Physiology, vol. 290 no. 6, pp. H2535-H2542, DOI: 10.1152/ajpheart.00972.2005, 2006.
[39] M. T. Tsou, J. Y. Ho, C. H. Lin, J. H. Chiu, "Proteomic analysis finds different myocardial protective mechanisms for median nerve stimulation by electroacupuncture and by local somatothermal stimulation," International Journal of Molecular Medicine, vol. 14 no. 4, pp. 553-563, 2004.
[40] P. Li, K. F. Pitsillides, S. V. Rendig, H. L. Pan, J. C. Longhurst, "Reversal of reflex-induced myocardial ischemia by median nerve stimulation: a feline model of electroacupuncture," Circulation, vol. 97 no. 12, pp. 1186-1194, 1998.
[41] M. M. Crisostomo, P. Li, S. C. Tjen-A-Looi, J. C. Longhurst, "Nociceptin in rVLM mediates electroacupuncture inhibition of cardiovascular reflex excitatory response in rats," Journal of Applied Physiology, vol. 98 no. 6, pp. 2056-2063, DOI: 10.1152/japplphysiol.01282.2004, 2005.
[42] C. M. Witt, K. Meissner, D. Pach, C. Thiele, R. Lüdtke, Z. Ghadiyali, "Stimulation of gastric slow waves with manual acupuncture at acupuncture points ST36 and PC6—a randomized single blind controlled trial," Neurogastroenterology and Motility, vol. 24 no. 5, pp. 438-445, 2012.
[43] J. H. Wu, H. Y. Chen, Y. J. Chang, H. C. Wu, W. D. Chang, Y. J. Chu, J. A. Jiang, "Study of autonomic nervous activity of night shift workers treated with laser acupuncture," Photomedicine and Laser Surgery, vol. 27 no. 2, pp. 273-279, DOI: 10.1089/pho.2007.2235, 2009.
[44] M. Hübscher, L. Vogt, W. Banzer, "Laser needle acupuncture at Neiguan (PC6) does not mediate heart rate variability in young, healthy men," Photomedicine and Laser Surgery, vol. 25 no. 1, pp. 21-25, DOI: 10.1089/pho.2006.2056, 2007.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2013 Gerhard Litscher et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
There are only few scientific publications dealing with the basic investigation of the effects of only one or two acupoints or comparing one single point with another single point, using different stimulation methods in the same persons. The aim of this needle-controlled, randomized crossover study was to investigate the neurovegetative parameters heart rate (HR) and heart rate variability (HRV) using two different acupoints, Baihui (GV20) and Neiguan (PC6), in separate sessions. We investigated 11 healthy volunteers (3 m, 8 f) with a mean age ± SD of
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Stronach Research Unit for Complementary and Integrative Laser Medicine, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, TCM Research Center Graz, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria