Full Text

Turn on search term navigation

© 2015 James et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Fatigue is a debilitating condition with a significant impact on patients’ quality of life. Fatigue is frequently reported by patients suffering from primary Sjögren’s Syndrome (pSS), a chronic autoimmune condition characterised by dryness of the eyes and the mouth. However, although fatigue is common in pSS, it does not manifest in all sufferers, providing an excellent model with which to explore the potential underpinning biological mechanisms.

Methods

Whole blood samples from 133 fully-phenotyped pSS patients stratified for the presence of fatigue, collected by the UK primary Sjögren’s Syndrome Registry, were used for whole genome microarray. The resulting data were analysed both on a gene by gene basis and using pre-defined groups of genes. Finally, gene set enrichment analysis (GSEA) was used as a feature selection technique for input into a support vector machine (SVM) classifier. Classification was assessed using area under curve (AUC) of receiver operator characteristic and standard error of Wilcoxon statistic, SE(W).

Results

Although no genes were individually found to be associated with fatigue, 19 metabolic pathways were enriched in the high fatigue patient group using GSEA. Analysis revealed that these enrichments arose from the presence of a subset of 55 genes. A radial kernel SVM classifier with this subset of genes as input displayed significantly improved performance over classifiers using all pathway genes as input. The classifiers had AUCs of 0.866 (SE(W) 0.002) and 0.525 (SE(W) 0.006), respectively.

Conclusions

Systematic analysis of gene expression data from pSS patients discordant for fatigue identified 55 genes which are predictive of fatigue level using SVM classification. This list represents the first step in understanding the underlying pathophysiological mechanisms of fatigue in patients with pSS.

Details

Title
A Transcriptional Signature of Fatigue Derived from Patients with Primary Sjögren’s Syndrome
Author
James, Katherine; Al-Ali, Shereen; Tarn, Jessica; Cockell, Simon J; Gillespie, Colin S; Hindmarsh, Victoria; Locke, James; Mitchell, Sheryl; Lendrem, Dennis; Bowman, Simon; Price, Elizabeth; Pease, Colin T; Emery, Paul; Lanyon, Peter; Hunter, John A; Gupta, Monica; Bombardieri, Michele; Sutcliffe, Nurhan; Pitzalis, Costantino; McLaren, John; Cooper, Annie; Regan, Marian; Giles, Ian; Isenberg, David; Vadivelu Saravanan; Coady, David; Dasgupta, Bhaskar; McHugh, Neil; Young-Min, Steven; Moots, Robert; Gendi, Nagui; Akil, Mohammed; Griffiths, Bridget; The UK Primary Sjögren’s Syndrome registry; Wipat, Anil; Newton, Julia; Jones, David E; Isaacs, John; Hallinan, Jennifer; Wan-Fai, Ng
First page
e0143970
Section
Research Article
Publication year
2015
Publication date
Dec 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1751190657
Copyright
© 2015 James et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.