Full text

Turn on search term navigation

© 2015 Gourni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose

The present study aims at developing and evaluating an urea-based prostate specific membrane antigen (PSMA) inhibitor suitable for labeling with 111In for SPECT and intraoperative applications as well as 68Ga and 64Cu for PET imaging.

Methods

The PSMA-based inhibitor-lysine-urea-glutamate-coupled to the spacer Phe-Phe-D-Lys(suberoyl) and functionalized with the enantiomerically pure prochelator (R)-1-(1-carboxy-3-carbotertbutoxypropyl)-4,7-carbotartbutoxymethyl)-1,4,7-triazacyclononane ((R)-NODAGA(tBu)3), to obtain (R)-NODAGA-Phe-Phe-D-Lys(suberoyl)-Lys-urea-Glu (CC34). CC34 was labeled with 111In, 68Ga and 64Cu. The radioconjugates were further evaluated in vitro and in vivo in LNCaP xenografts by biodistribution and PET studies. Biodistribution studies were also performed with 68Ga-HBED-CC-PSMA (HBED-CC: N,N′-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid) and 111In-PSMA-617 for comparison.

Results

68Ga-CC34, 64Cu-CC34, and 111In-CC34 were prepared in radiochemical purity >95%. 68/natGa-CC34, 64/natCu-CC34, 111/natIn-CC34, 68/natGa-HBED-CC-PSMA, and 111/natIn-PSMA-617 exhibited high affinity for the LNCaP cells, with Kd values of 19.3±2.5 nM, 27.5±2.7 nM, 5.5±0.9 nM, 2.9±0.6 nM and 5.4±0.8 nM, respectively. They revealed comparable internalization profiles with approximately 75% of the total cell associated activity internalized after 3 h of incubation. 68Ga-CC34 showed very high stability after its administration in mice. Tumor uptake of 68Ga-CC34 (14.5±2.9% IA/g) in LNCaP xenografts at 1 h p.i. was comparable to 68Ga-HBED-CC-PSMA (15.8±1.4% IA/g) (P = 0.67). The tumor-to-normal tissue ratios at 1 and 2 h p.i of 68Ga-CC34 were also comparable to 68Ga-HBED-CC-PSMA (P>0.05). Tumor uptake of 111In-CC34 (28.5±2.6% IA/g) at 1 h p.i. was lower than 111In-PSMA-617 (52.1±6.5% IA/g) (P = 0.02). The acquisition of PET-images with 64Cu-CC34 at later time points showed wash-out from the kidneys, while tumor uptake still remained relatively high. This resulted in an increased tumor-to-kidney ratio over time.

Conclusions

68Ga-CC34 is comparable to 68Ga-HBED-CC-PSMA in terms of tumor uptake and tumor to normal tissue ratios. 64Cu-CC34 could enable high contrast imaging of PSMA positive tissues characterized by elevated expression of PSMA or when delayed imaging is required. 64Cu-CC34 is currently being prepared for clinical translation.

Details

Title
(R)-NODAGA-PSMA: A Versatile Precursor for Radiometal Labeling and Nuclear Imaging of PSMA-Positive Tumors
Author
Gourni, Eleni; Canovas, Coline; Goncalves, Victor; Denat, Franck; Meyer, Philipp T; Maecke, Helmut R
First page
e0145755
Section
Research Article
Publication year
2015
Publication date
Dec 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1751482363
Copyright
© 2015 Gourni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.