Abstract
Background
Spatially explicit forest carbon (C) monitoring aids conservation and climate change mitigation efforts, yet few approaches have been developed specifically for the highly heterogeneous landscapes of oceanic island chains that continue to undergo rapid and extensive forest C change. We developed an approach for rapid mapping of aboveground C density (ACD; units = Mg or metric tons C ha^sup -1^) on islands at a spatial resolution of 30 m (0.09 ha) using a combination of cost-effective airborne LiDAR data and full-coverage satellite data. We used the approach to map forest ACD across the main Hawaiian Islands, comparing C stocks within and among islands, in protected and unprotected areas, and among forests dominated by native and invasive species.
Results
Total forest aboveground C stock of the Hawaiian Islands was 36 Tg, and ACD distributions were extremely heterogeneous both within and across islands. Remotely sensed ACD was validated against U.S. Forest Service FIA plot inventory data (R^sup 2^ = 0.67; RMSE = 30.4 Mg C ha^sup -1^). Geospatial analyses indicated the critical importance of forest type and canopy cover as predictors of mapped ACD patterns. Protection status was a strong determinant of forest C stock and density, but we found complex environmentally mediated responses of forest ACD to alien plant invasion.
Conclusions
A combination of one-time airborne LiDAR data acquisition and satellite monitoring provides effective forest C mapping in the highly heterogeneous landscapes of the Hawaiian Islands. Our statistical approach yielded key insights into the drivers of ACD variation, and also makes possible future assessments of C storage change, derived on a repeat basis from free satellite data, without the need for additional LiDAR data. Changes in C stocks and densities of oceanic islands can thus be continually assessed in the face of rapid environmental changes such as biological invasions, drought, fire and land use. Such forest monitoring information can be used to promote sustainable forest use and conservation on islands in the future.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




