Abstract
Platinum nanoparticles (PNPs) were synthesized by chemical reduction of potassium hexachloroplatinate (IV) with trisodium citrate under vigorous stirring and addition of sodium dodecyl sulfate as stabilizer reagent. Reducing agent was chosen depending on the oxidation reactions and potential values of the chemical materials used in the experiment. The aim of this study is to investigate the effects of PNPs on the different cancer cell lines and cytotoxicity study of this nanomaterial. The morphology of PNPs was investigated by scanning electron microscope (XL30, Philips Electronics, Amsterdam, The Netherlands) with the ability to perform elemental analysis by EDX. Malvern Zetasizer 3000 HSA (Malvern Instruments, Worcestershire, UK) was used to determine the distribution of particle size and zeta potential of PNPs. The cytotoxicity property of the nanoparticles was evaluated by MTT assay on MCF-7 and HepG-2 cell lines, and the cytotoxic concentration 50% values were determined for 24 h.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





