Full text

Turn on search term navigation

Copyright © 2016 Tianshi Lv et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Considering the fact that results for static neural networks are much more scare than results for local field neural networks and our purpose letting the problem researched be more general in many aspects, in this paper, a generalized neural networks model which includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks is built and the stability and bifurcation problems for it are investigated under Neumann boundary conditions. First, by discussing the corresponding characteristic equations, the local stability of the trivial uniform steady state is discussed and the existence of Hopf bifurcations is shown. By using the normal form theory and the center manifold reduction of partial function differential equations, explicit formulae which determine the direction and stability of bifurcating periodic solutions are acquired. Finally, numerical simulations show the results.

Details

Title
Stability and Bifurcation Analysis for a Class of Generalized Reaction-Diffusion Neural Networks with Time Delay
Author
Lv, Tianshi; Gan, Qintao; Zhu, Qikai
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
10260226
e-ISSN
1607887X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1761402061
Copyright
Copyright © 2016 Tianshi Lv et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.