Abstract
Background
A number of field studies have demonstrated that the yield potential of hybrid rice cultivars is higher than that of inbred cultivars, although the magnitude of difference between hybrid and inbred cultivars at different yield levels has not been described. The objective of this study is to compare the yield increase potential at different yield levels between hybrid and conventional rice. Ten field experiments were conducted at five locations in southern China in 2012 and 2013. At each location, two hybrid and two inbred cultivars were grown at three N levels: high (225 kg/hm^sup 2^), moderate (161-191 kg/hm^sup 2^) and the control, zero N (0 kg/hm^sup 2^).
Results
Hybrid rice yielded approximately 8 % more grain than did inbred cultivars in Huaiji, Binyang and Haikou; approximately 7 % more in Changsha; and approximately 19 % more in Xingyi. The high grain yields observed for hybrid rice cultivars were attributed to high grain weight and biomass accumulation at maturity. On average, rice yields were approximately 6.0-7.5 t ha^sup -1^ (medium yield) in Huaiji, Binyang and Haikou; approximately 9.0 t ha^sup -1^ in Changsha (high yield); and approximately 12.0 t ha^sup -1^ (super high yield) in Xingyi. The yield gaps among Huaiji, Binyang and Haikou and Changsha were attributed to the differences in spikelets m^sup -2^ and biomass production, whereas the yield gap between Changsha and Xingyi was caused by the differences in grain-filling percentage, grain weight and harvest index. The differences in biomass production among sites were primarily due to variation in crop growth rate induced by varied temperatures and accumulative solar radiation.
Conclusions
The yield superiority of hybrid rice was relatively small in comparison with that of inbred cultivars at medium and high yield levels, but the difference was large at super high yield levels. Improving rice yields from medium to high should focus on spikelets m^sup -2^ and biomass, whereas further improvement to super high level should emphasize on grain-filling percentage, grain weight and harvest index. Favorable environmental conditions are essential for high yields in hybrid rice.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





