Abstract
In this work matrix based nanoparticulate polymer systems have been designed using the diacrylate derivative of the well-known biocompatible polymer, poly(ethylene glycol) (PEG). This has been crosslinked using bifunctional (ethyleneglycol dimethacrylate) and tetrafunctional (pentaerythritol tetraacrylate) crosslinkers in varied concentrations (10-90%) to result in a polymeric network. The crosslinked polymers thus obtained were characterized by spectroscopic techniques (NMR and FTIR) and then prepared nanoparticles by the nanoprecipitation technique. Particle size analysis showed sizes of ~150 nm (PDI<1) (with tetrafunctional crosslinker) and ~300 nm (with bifunctional crosslinker). Both the systems however showed unimodal narrow particle size distributions with negative zeta potential values of -15.6 and -7.3 respectively. Cytotoxicity of these formulations was evaluated by MTT assay showing non-cytotoxic nature of these carrier systems. In vitro drug loading and release studies were carried out using a model chemotherapeutic drug, methotrexate(MTX). These MTX loaded nanoformulations have also been evaluated biologically with the help of in vivo studies using radiolabeling techniques (with ^sup 99m^Tc radionuclide). The blood kinetics profile of the formulations was studied on New Zealand Albino rabbits while the biodistribution studies were performed on balb/c mice (with EAT tumours), which revealed a hepatobiliary mode of elimination. These preliminary studies clearly demonstrated the ability of these multifunctional crosslinkers to result in tight nanosized networks with biocompatible polymers such as PEG and their potential to carry chemotherapeutic drugs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





